
 123

LN
BI

P
20

7

Theoretical Aspects, Algorithms, Techniques
and Open Challenges in Process Mining

Process Mining Techniques
in Business Environments

Andrea Burattin

Lecture Notes
in Business Information Processing 207

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Andrea Burattin

Process Mining Techniques
in Business Environments
Theoretical Aspects, Algorithms, Techniques
and Open Challenges in Process Mining

123

Andrea Burattin
University of Innsbruck
Innsbruck
Austria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-17481-5 ISBN 978-3-319-17482-2 (eBook)
DOI 10.1007/978-3-319-17482-2

Library of Congress Control Number: 2015938082

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This book encompasses a revised version of the Ph.D. dissertation, written by the
author, at the Mathematics Department of the University of Padua (Italy), and at the
Computer Science Department of the University of Bologna (Italy).

In 2014, the dissertation won the “Best Process Mining Dissertation Award”,
assigned by the IEEE Task Force on Process Mining to the most outstanding Ph.D.
thesis, discussed between 2012 and 2013, focused on the area of business process
intelligence.

The increasing availability of storage and computing capability, combined with the
advent of new “smart” devices, represents the fundamental basis of the so-called
“Internet of Things” (IoT). Business companies are focusing their attention to IoT as
well, since it could be exploited in a valuable manner. One of the results of such IoT
diffusion, but more generally, a common trend of these years, is that the data collection
is monumentally increasing.

It is important to remind that the value of data is intimately connected to the
knowledge that it is possible to synthesize from them. Moreover, in order to strengthen
their business, the focus of companies should be on the consolidation and improvement
of their business processes, rather than on their data. This is the scenario where process
mining sits: in between data mining, and business process modeling.

After a brief presentation of the state of the art of process mining techniques, this
book proposes different scenarios for the deployment of process mining projects. In
particular, a characterization of companies, in terms of their “process awareness” (and
process awareness of their information systems), is detailed.

The work continues identifying and reporting the possible circumstances where
problems, both “practical” and “conceptual”, can emerge. We identified these three
areas as possible sources of problems: (i) data preparation (e.g., syntactic translation of
data, missing data); (ii) the actual mining phase (e.g., mining algorithm exploiting all
data available); and (iii) results interpretation. Several problems are not limited to a
single phase, but orthogonal to all the mentioned sources: for example, the configu-
ration of parameters by non-expert users or the computational complexity of some
techniques. In this book we will analyze at least one solution for each of the presented
problems. The descriptions of these solutions are kept general, in order to easily allow
their tailoring into specific application domains.

The solutions proposed in this book belong to two different computational para-
digms: the first considers the classical “batch process mining” (also known as “off-
line”); the second introduces the “on-line process mining”.

Concerning batch process mining, we are going to investigate first the data prepa-
ration problem and we will analyze and present a solution for the problem of hidden
data (i.e., when a required field is not explicitly indicated). In our example we are going
to consider the “case-id”. In particular, our approach tries to identify this missing
information by looking at metadata recorded for each event.

After that, we will concentrate on the second step (the mining phase) and, in particular,
on the problem of exploiting all the available information. As example, we propose the
generalization of a well-known control-flow discovery algorithm (i.e., Heuristics Miner)
in order to exploit non-instantaneous events. The usage of interval-based recording leads
to an important improvement of the algorithm performance. As another example of data
exploitation, we present an automatic approach for the extension of a control-flow model
with social information (i.e., roles), in order to simplify the analysis of these two per-
spectives (the control-flow and resources) combined.

Later on, we will focus our attention on another important and, for non-expert users,
impacting problem: the parameters configuration. As example, we considered the
configuration of a control-flow discovery algorithm. Our approach consists of two
steps: first, we introduce a method to automatically discretize the space of parameter
values. Then, we present two approaches to select the “best” parameters configuration.
The first, completely autonomous, uses the Minimum Description Length principle to
balance the model complexity and the data explanation; the second requires human
interaction to navigate a hierarchy of models and find the most suitable result.

The data interpretation and results evaluation phase is not problem free, as well.
Also in this case, we will analyze the problems and propose two new metrics: a model-
to-model and a model-to-log (the latter considers models expressed in declarative
language).

The final part of this book deals with the adaptation of process mining to on-line
settings. We will consider, as example, the problem of on-line control-flow discovery.
Specifically, we are going to propose a formal definition of the problem and then
present two baseline approaches. These two basic approaches are used only for vali-
dation purposes. The actual mining algorithms proposed will be two: the first is the
adaptation, to the control-flow discovery problem, of a well-known frequency counting
algorithm (i.e., Lossy Counting); the second constitutes a framework of models which
can be used for different kinds of streams (for example, stationary streams or streams
with concept drifts)

Innsbruck, Austria Andrea Burattin
February 2015

VI Preface

Acknowledgments

I would like to thank, in primis, my Ph.D. supervisor: Alessandro Sperduti. His con-
tinuous, expert, and passionate guidance incredibly simplified my job. It is a privilege
to work with such a generous person and qualified professor and researcher.

I want to express my authentic gratitude to Roberto Pinelli, from Siav. He has been
always willing to help me, by all means, and many parts of this book are due to the
opportunities he gave me.

Also, I’m very thankful to Paolo Baldan, Diogo Ferreira, Tullio Vardanega, and
Barbara Weber who spent their time reading my Ph.D. thesis, and sharing their useful
comments.

As mentioned, this book comes as an elaborated version of my Ph.D. thesis. I’m
particularly thankful to the organizers of the Best Process Mining Dissertation Award:
Dirk Fahland, Antonella Guzzo, and Marcello La Rosa. Their detailed comments and
elaborate suggestions substantially helped me in shaping this work.

Special thanks go to Wil van der Aalst: working with him and his team has been an
incredibly formative experience. His remarkable professionalism and competence are
sources of inspiration for my work.

I would like to thank all my colleagues and friends, who shared with me the Ph.D.
journey, at the University of Padua and Bologna, in Siav, and at the AIS group, in
Eindhoven.

Infine, ringrazio mia moglie Serena, i miei genitori Stefania e Antonio, e tutta la mia
famiglia per non avere mai lesinato nel darmi aiuto, fiducia e serenità, e la possibilità
di raggiungere i miei obiettivi.

Innsbruck, Austria Andrea Burattin
February 2015

Contents

1 Introduction . 1
1.1 Business Process Modeling . 1
1.2 Process Mining . 3
1.3 Book Outline . 4
1.4 Website . 7

Part I: State of the Art: BPM, Data Mining and Process Mining

2 Introduction to Business Processes, BPM, and BPM Systems 11
2.1 Introduction to Business Processes . 11

2.1.1 Petri Nets . 14
2.1.2 BPMN . 15
2.1.3 YAWL . 17
2.1.4 Declare . 18
2.1.5 Other Formalisms . 19

2.2 Business Process Management Systems . 19

3 Data Generated by Information Systems (and How to Get It) 23
3.1 Information Extraction from Unstructured Sources 23
3.2 Evaluation with the F1 Measure. 24

4 Data Mining for Information System Data . 27
4.1 Classification with Nearest Neighbor . 27
4.2 Neural Networks Applied to Estimation . 28
4.3 Association Rules Extraction . 29
4.4 Clustering . 29

4.4.1 Clustering with Self-organizing Maps 29
4.4.2 Clustering with Hierarchical Clustering 30

4.5 Profiling Using Decision Trees . 31

5 Process Mining . 33
5.1 Process Mining as Control-Flow Discovery 35
5.2 Other Perspectives of Process Mining. 45

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_2
http://dx.doi.org/10.1007/978-3-319-17482-2_2
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_3
http://dx.doi.org/10.1007/978-3-319-17482-2_3
http://dx.doi.org/10.1007/978-3-319-17482-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_4
http://dx.doi.org/10.1007/978-3-319-17482-2_4
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_4#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec2

5.2.1 Organizational Perspective . 45
5.2.2 Conformance Checking . 46
5.2.3 Data Perspective . 46

5.3 Performance Evaluation of Process Mining Algorithm 46

6 Quality Criteria in Process Mining . 49
6.1 Model-to-Log Metrics . 51
6.2 Model-to-Model Metrics . 52

7 Event Streams . 53
7.1 Data Streams. 53

7.1.1 Data-Based Mining . 54
7.1.2 Task-Based Mining . 54

7.2 Common Stream Mining Approaches . 54
7.3 Stream Mining and Process Mining . 54

Part II: Obstacles to Process Mining in Practice

8 Obstacles to Applying Process Mining in Practice 59
8.1 Typical Deploy Scenarios . 59
8.2 Problems with Data Preparation . 60
8.3 Problems During the Mining Phase . 62
8.4 Problems with the Interpretation of the Mining Results

and Extension of Processes . 62
8.5 Incremental and Online Process Mining . 63

9 Long-term View Scenario. 65
9.1 A Target Scenario . 65
9.2 Discussion . 66

Part III: Process Mining as an Emerging Technology

10 Data Preparation . 71
10.1 Process Mining in New Scenarios . 72
10.2 Working Framework for Event Logs . 73
10.3 Identification of Process Instances . 75

10.3.1 Exploiting A-priori Knowledge . 75
10.3.2 Selection of the Identifier . 76
10.3.3 Results Organization and Filtering 78
10.3.4 Deriving a Log to Mine . 79

10.4 Experimental Results . 80
10.5 Similar Problems and Solutions . 81
10.6 Summary . 83

11 Heuristics Miner for Time Interval . 85
11.1 Heuristics Miner . 86
11.2 Activities as Time Interval . 88

X Contents

http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_6
http://dx.doi.org/10.1007/978-3-319-17482-2_6
http://dx.doi.org/10.1007/978-3-319-17482-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_7
http://dx.doi.org/10.1007/978-3-319-17482-2_7
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_9
http://dx.doi.org/10.1007/978-3-319-17482-2_9
http://dx.doi.org/10.1007/978-3-319-17482-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_10
http://dx.doi.org/10.1007/978-3-319-17482-2_10
http://dx.doi.org/10.1007/978-3-319-17482-2_10
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec11
http://dx.doi.org/10.1007/978-3-319-17482-2_10#Sec11
http://dx.doi.org/10.1007/978-3-319-17482-2_11
http://dx.doi.org/10.1007/978-3-319-17482-2_11
http://dx.doi.org/10.1007/978-3-319-17482-2_11
http://dx.doi.org/10.1007/978-3-319-17482-2_11#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_11#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_11#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_11#Sec2

11.3 Experimental Results . 91
11.4 Summary . 94

12 Automatic Configuration of Mining Algorithm 97
12.1 The Problem of Selecting the Right Parameters 98
12.2 Parameters of the Heuristics Miner++ Algorithm 99
12.3 Facing the Parameters Setting Problem . 101
12.4 Discretization of the Parameters Values . 102
12.5 Exploration of the Hypothesis Space . 103
12.6 Improved Exploration of the Hypothesis Space 105

12.6.1 Factorization of the Search Space 105
12.6.2 Searching for the Best Hypothesis 106

12.7 Experimental Results . 108
12.7.1 Experimental Setup . 108
12.7.2 Results. 109

12.8 Summary . 112

13 User-Guided Discovery of Process Models. 113
13.1 Clustering for Process Mining . 114
13.2 Results on Clustering for Process Mining 114
13.3 Implementation . 115
13.4 Summary . 118

14 Extensions of Business Processes with Organizational Roles 119
14.1 Working Framework . 120
14.2 Rules for Handover of Roles . 123

14.2.1 Rule for Strong No Handover . 124
14.2.2 Rule for No Handover . 124
14.2.3 Degree of No Handover of Roles 124
14.2.4 Merging Roles . 125

14.3 Algorithm Description . 126
14.3.1 Step 1: Handover of Roles Identification 126
14.3.2 Step 2: Roles Aggregation . 127
14.3.3 Generation of Candidate Solutions. 128
14.3.4 Partition Evaluation . 130

14.4 Experiments . 130
14.5 Other Approaches Dealing with Organizational Perspective 134
14.6 Summary . 135

15 Results Interpretation and Evaluation. 137
15.1 Comparing Processes . 138

15.1.1 Problem Statement and the General Approach. 139
15.1.2 Process Representation. 140
15.1.3 A Metric for Processes Comparison 144

Contents XI

http://dx.doi.org/10.1007/978-3-319-17482-2_11#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_11#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_11#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_11#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_12
http://dx.doi.org/10.1007/978-3-319-17482-2_12
http://dx.doi.org/10.1007/978-3-319-17482-2_12
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec11
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec11
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec12
http://dx.doi.org/10.1007/978-3-319-17482-2_12#Sec12
http://dx.doi.org/10.1007/978-3-319-17482-2_13
http://dx.doi.org/10.1007/978-3-319-17482-2_13
http://dx.doi.org/10.1007/978-3-319-17482-2_13
http://dx.doi.org/10.1007/978-3-319-17482-2_13#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_13#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_13#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_13#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_13#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_13#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_13#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_13#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_14
http://dx.doi.org/10.1007/978-3-319-17482-2_14
http://dx.doi.org/10.1007/978-3-319-17482-2_14
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec11
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec11
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec12
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec12
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec13
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec13
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec14
http://dx.doi.org/10.1007/978-3-319-17482-2_14#Sec14
http://dx.doi.org/10.1007/978-3-319-17482-2_15
http://dx.doi.org/10.1007/978-3-319-17482-2_15
http://dx.doi.org/10.1007/978-3-319-17482-2_15
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec4

15.2 A-Posteriori Analysis of Declarative Processes 147
15.2.1 Declare . 147
15.2.2 An Approach for A-Posteriori Analysis 148
15.2.3 An Algorithm to Discriminate Fulfillments

from Violations . 151
15.2.4 Healthiness Measures. 154
15.2.5 Experiments . 156

15.3 Implementations . 161
15.4 Summary . 161

16 Hands-On: Obtaining Test Data . 163
16.1 A Process and Logs Generator. 164

16.1.1 The Processes Generation Phase . 165
16.1.2 Execution of a Process Model. 169

16.2 Implementation . 172
16.3 Summary . 173

Part IV: A New Challenge in Process Mining

17 Process Mining for Stream Data Sources . 177
17.1 Basic Concepts . 178
17.2 Heuristics Miners for Streams . 181

17.2.1 Baseline Algorithm for Stream Mining. 181
17.2.2 Stream-Specific Approaches . 183
17.2.3 Stream Process Mining with Lossy Counting

(Evolving Stream) . 187
17.3 Error Bounds on Online Heuristics Miner 189
17.4 Results . 191

17.4.1 Models Description . 192
17.4.2 Algorithms Evaluation . 192

17.5 Implementation . 201
17.6 Summary . 203

Part V: Conclusions and Future Work

18 Conclusions and Future Work . 207
18.1 Wrap-Up . 207
18.2 Future Work . 210

References. 211

XII Contents

http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec13
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec13
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec14
http://dx.doi.org/10.1007/978-3-319-17482-2_15#Sec14
http://dx.doi.org/10.1007/978-3-319-17482-2_16
http://dx.doi.org/10.1007/978-3-319-17482-2_16
http://dx.doi.org/10.1007/978-3-319-17482-2_16
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_16#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_17
http://dx.doi.org/10.1007/978-3-319-17482-2_17
http://dx.doi.org/10.1007/978-3-319-17482-2_17
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec3
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec4
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec5
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec6
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec7
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec8
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec9
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec10
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec11
http://dx.doi.org/10.1007/978-3-319-17482-2_17#Sec11
http://dx.doi.org/10.1007/978-3-319-17482-2_18
http://dx.doi.org/10.1007/978-3-319-17482-2_18
http://dx.doi.org/10.1007/978-3-319-17482-2_18
http://dx.doi.org/10.1007/978-3-319-17482-2_18#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_18#Sec1
http://dx.doi.org/10.1007/978-3-319-17482-2_18#Sec2
http://dx.doi.org/10.1007/978-3-319-17482-2_18#Sec2

Chapter 1
Introduction

For some years now, the usage of information systems has been rapidly growing, in
companies of all kinds and sizes. New systems are moving from supporting single
functionalities towards a business processes orientation. In Computer Science, a
new research area is emerging, called “process mining”, which provides algorithms,
techniques and tools to perform fact-based analyses, with the final aim of improving
business processes.

1.1 Business Process Modeling

Activities that companies are required to perform, in order to complete their own
business, are becoming more complex and need the interaction of several persons
and heterogeneous systems. A possible approach to simplify the management of
the business is based on the division of operations into smaller “entities” and on
the definition of the required interactions among them. The term “business process”
refers to this set of activities and interactions.

A simplification of a business process, that describes the handling of an order
submitted through an e-commerce website, is depicted in Fig. 1.1. In this case, the
process is represented just as a dependency graph: each box represents an activity, and
connections between boxes indicate the order in which activities may be executed.
Specifically, in the example of the figure, the process starts with the registration of the
order and the registration of the payment. Once the payment registration is complete,
two activities may execute concurrently (i.e. there is no dependency between them).
Finally, when the “Goods wrapping” and “Shipping note preparation” are complete,
the final “Shipping” activity can start. The conclusion of this last activity terminates
the current process instance too.

Most of the software used to define and to help operators involved in executing
such processes, typically, leave a trace of the performed activities.An example of such
trace (called “log”) is presented in Table1.1. As can be observed, the fundamental
information we are going to need to accomplish themission of this book are the name

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_1

1

2 1 Introduction

Fig. 1.1 Example of a process model which describes a general process of order management,
starting from its registration to the shipping of the goods.

of the activity and the time the activity is executed; moreover, it is important to note
that the traces are grouped into “instances” (or “cases”): typically, it is necessary to
handle several orders at the same time, and therefore the process is required to be
concurrently instantiated several times as well. These instances are identified by a
“case identifier” (or “instance id”), which is another field typically included in the
log of the traces.

Companies, especially small and medium ones, do not often perform their work
according to a formal and explicit business process; instead, typically, they execute
their activities with respect to an implicit sorting. Even if such a prescriptive model is
not available, the systems used to execute the process, frequently writes executions
of process steps into a log file. So, the key idea is that a log can exist even if it is not
an expression of a explicit process model (as shown in Fig. 1.1). The aim of process
mining is to use such logs to extract a business process model coherent with the
recorded events. This model can then be used to improve the company business by
detecting and solving deadlocks, bottlenecks, …

Table 1.1 An example of log
recorded after two executions
of the business process
described in Fig. 1.1.

Activities Execution Time

Instance 1
1 Order registration Feb 21, 2015 12:00

2 Payment registration Feb 22, 2015 09:00

3 Goods wrapping Feb 26, 2015 08:30

4 Shipping note preparation Feb 26, 2015 09:30

5 Shipping Feb 26, 2015 10:15

Instance 2
1 Order registration Feb 23, 2015 15:45

2 Payment registration Feb 25, 2015 17:31

3 Shipping note preparation Feb 26, 2015 08:30

4 Goods wrapping Feb 26, 2015 10:00

5 Shipping Feb 26, 2015 12:30

1.2 Process Mining 3

1.2 Process Mining

The term “process mining” refers to an emerging research field which deals with
several different activities, all joined by the final aim of extracting knowledge out
of the available log files. These activities are: control-flow discovery; conformance
checking; and extension or enhancement. We will provide details for each of these
activities in Chap. 5 but, in this section, we are going to consider the control-flow
discovery as an illustrative example to demonstrate how logs can be treated.

An ideal process mining algorithm for control-flow discovery, as it analyzes the
log, identifies all the process instances, and then tries to define some relations among
activities. Considering the example of Table1.1, “Order registration” is always the
first activity executed; it is always followed by “Payment registration” and this could
mean that there is a causal dependency between them (i.e. “Order registration” is
required by “Payment registration”). The algorithm continues and detects that “Pay-
ment registration” is sometimes followed by “Goods wrapping” and other times by
“Shipping note preparation” but, in any case, both activities are always performed.
A possible interpretation of such behaviour is that there is no specific order between
the execution of the last two activities (which can be executed concurrently), but both
of them require “Payment registration”. At the end, “Shipping” is observed as last
activity always executed after “Shipping note preparation” or “Goods wrapping”.
Once all these relations are available, it is possible to combine them in order to con-
struct the mined model. The algorithm just presented as example is, essentially, the
Alpha algorithm [162] that will be described in Sect. 5.1.

The procedure presented in the previous paragraph helps us to illustrate the general
idea of process mining as control-flow discovery: many other algorithms have been
designed and implemented, using different approaches and starting from different
assumptions. A detailed review of several algorithms will be later provided in this
book, in Chap.5.

However, even if several approaches are available, many important problems
remain still unresolved. Some of them are presented in [166], and here we report the
most important ones:

• some process models may have the same activity appearing several times, in dif-
ferent positions. However, almost all process mining techniques are not able to
extract this kind of tasks: instead, they just insert one activity in the mined model,
and therefore the connections of the mined model are very likely to be wrong;

• many times, logs report a lot of data not used by mining algorithms (e.g., detailed
timing information, such as distinguishing the starting from the finishing time of an
event). This information, however, can be used, by mining algorithms, to improve
the accuracy of mined models;

• current mining algorithms do not perform an “holistic mining” of different per-
spectives, coming from different sources: for example, not only the control-flow,
but also a social network with the interactions between the activity originators
(creating a global process description). Such global perspective is able to give
many more insights, with respect to the single perspectives;

http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_5

4 1 Introduction

• dealingwith noise and incompleteness: “noise” identifies an uncommonbehaviour,
that should not be described in the mined model; “incompleteness” represents the
lack of some information required for performing the mining task. Almost all
business logs are affected by these two problems, and process mining algorithms
are not always able to properly deal with them;

• visualization of mining results: present the results of process mining in a way that
allows people to gain insights in the process.

The key point is that, even if some algorithms solve a subset of the problems, some
of them are not solved yet, or the proposed solutions are not always feasible. In this
book we try to tackle some of these problems, in order to provide viable solutions
for applying process mining in practice.

In this book we are going to analyze the applicability of process mining in real-
world business environments. Specifically, when these techniques are applied in
reality some of the problems listed previously become evident and new problems
(not strictly related to process mining) can emerge. The most outstanding ones are:

P-01 Incompleteness: obtaining a complete log where all the required information
are actually available (e.g. in some applications the case identifier might be
missing). A log which does not contain all required information, is not useful;

P-02 Exploiting as much information, recorded into log files, as possible (such as
resource, time, data), as previously mentioned;

P-03 Difficulties in using process mining tools and configuring algorithms. Typical
processmining users are non-expert users, therefore it is hard for them to properly
configure all the required parameters;

P-04Results interpretation: generation of the results with an as-readable-as-possible
graphical representation of the process, where all the extracted information are
represented in a simple and understandable manner. Non-expert users may have
no specific knowledge in process modeling;

P-05 Computational power and storage capacity required: small and medium sized
companies may not be able to cope with the technological requirement of large
process mining projects.

Our contribution is to analyze the above-mentioned problems, and to propose some
feasible directions towards their resolution.

1.3 Book Outline

The structure of the main contributions of this book (i.e., Parts III and IV) are graph-
ically reported in Fig. 1.2. In particular, we are going to analyze all the problems that
might occur during a business processmining project. Black texts indicate the objects
we deal with in this context; red texts represent chapters of this book; finally, arrows
are used to present connections between them. Other chapters are not included in the
picture for readability purposes.

1.3 Book Outline 5

Fig. 1.2 Organization of the main contributions of the book. Each activity is written in italic red
font and, the white number in the red circle indicates the corresponding chapter number. Dotted
lines indicate that the input/output is not an “object” for the final user, instead it represents a
methodological approach (e.g., a way to configure parameters).

Part I – State of the Art: BPM, Data Mining and
Process Mining

In this part we are going to provide the fundamental preliminaries and the basic
notions (such as a business process, Petri net, BPMN, clustering, metrics), required
in order to understand the rest of the book. Some state-of-the-art summary on business
process management (Chap. 2), data extraction (Chap.3), data mining (Chap.4), and
process mining (Chap.5) is provided as well. This part terminates with some notes
on the quality criteria useful in process mining, reported in Chap.6, and some notions
on event streams, described in Chap.7.

Part II – Obstacles to Process Mining in Practice

This short part will describe, in Chap.8, the typical application scenarios for process
mining project, and the common problems that analysts may have to face. A general
long-term view scenario, for process mining projects, is proposed as well in Chap.9.

http://dx.doi.org/10.1007/978-3-319-17482-2_2
http://dx.doi.org/10.1007/978-3-319-17482-2_3
http://dx.doi.org/10.1007/978-3-319-17482-2_4
http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_6
http://dx.doi.org/10.1007/978-3-319-17482-2_7
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_9

6 1 Introduction

Part III – Process Mining as an Emerging Technology

With this part we will dive into the actual process mining problems and related
proposed solutions.

In Chap.10 we take a closer look at open problem P-01, to obtain a complete
log. We present an algorithm, based on relational algebra, for reconstructing case
identifiers from event logs that do not explicitly carry this information.

We tackled P-02 proposing a new control-flow discovery algorithm, able to
consider activities as time intervals, instead of instantaneous events, as reported
in Chap.11. An important aspect of this algorithm is that, if such information on
activities duration is not available in the log, performance falls back to the more
general case, with no additional cost. Still under the umbrella of P-02, we proposed
an approach to extend a business process with organizational entities involved in the
execution of each activity (i.e., roles), as reported in Chap.14.

Chapters12 and 13 propose two solutions for the problem we identified as P-03.
Specifically, given a log, we are able to build an exhaustive set of possible mined
models. Then, we present two approaches to explore this space of models: the first
consists of a completely autonomous search; the second approach requires the user’s
interaction, however this technique is based on the actual structure of the final mode:
something the user is able to understand.

Concerning the interpretation of results, referred as P-04, a model-to-model met-
ric is proposed. This metric, specifically designed for process mining tasks, is able to
discriminate business models and can be used for the clustering of processes. In this
book, a model-to-log metric is proposed as well. Such metric can give healthiness
measures of a declarative process model with respect to a particular log (i.e., if the
behavior observed in the log is consistent with the given model). Both approaches
are discussed in Chap.15.

Additionally, Chap. 16 reports problems related to the lack of test data and the
approach we built for the random generation of business processes and logs.

Part IV – A New Challenge in Process Mining

Finally, since many times a “batch” approach is not feasible, to address P-05, a
completely new approach is proposed. We refer to this problem as online process
mining (i.e., process mining applied to event streams). This new class of techniques
allows the incremental mining of streams of events. The approach, which can be
used in online manner and is also able to cope with concept drifts, is described in
Chap.17.

Part V – Conclusions and Future Work

This part, with Chap.18, concludes the book by wrapping-up the content and
proposing some possible way to continue the work on these topics.

http://dx.doi.org/10.1007/978-3-319-17482-2_10
http://dx.doi.org/10.1007/978-3-319-17482-2_11
http://dx.doi.org/10.1007/978-3-319-17482-2_14
http://dx.doi.org/10.1007/978-3-319-17482-2_12
http://dx.doi.org/10.1007/978-3-319-17482-2_13
http://dx.doi.org/10.1007/978-3-319-17482-2_15
http://dx.doi.org/10.1007/978-3-319-17482-2_16
http://dx.doi.org/10.1007/978-3-319-17482-2_17
http://dx.doi.org/10.1007/978-3-319-17482-2_18

1.4 Website 7

1.4 Website

All the software described in this book, the datasets, and other additional tools can
be downloaded from the book website:

http://andrea.burattin.net/monograph

On this website it is also possible to find further information and the book errata.

http://andrea.burattin.net/monograph

Part I
State of the Art: BPM, Data Mining
and Process Mining

This part gives a general introduction to the process mining field, starting from the very basic
notion of business process.

A detailed presentation of the state of the art of process mining is offered, focusing on
Control-Flow Discovery algorithms, and some approaches for the evaluation of business
processes are described. Data mining, event streams, and quality measures are reported as well.

Chapter 2
Introduction to Business Processes, BPM,
and BPM Systems

This chapter provides a basic overview on business processes. In particular it concen-
trates on the actual definition and characterization of processes, and on the different
languages that can be used to describe them. Some notions on the main components
of BPM systems conclude this chapter.

2.1 Introduction to Business Processes

It is very common, in industrial settings, that the performed activities are repetitive
and have several persons involved. In these cases, it is very useful to define a standard
procedure that everyone can follow. A business process, essentially, is the definition
of such “standard procedure”.

Since the process aims at standardizing and optimizing the activities of the com-
pany, it is important to keep the process up to date and as flexible as possible, in
order to meet the market requirements and the business objectives.

Business Process

There are several definitions of “business process”. The most influential ones are
reported in [91]. The first, presented in [76] by Hammer and Champy, states that a
business process is:

A collection of activities that takes one or more kinds of input and creates an output that is
of value to the customer. A business process has a goal and is affected by events occurring
in the external world or in other processes.

In another work, by Davenport [43], a business process is defined as:

A structured, measured set of activities designed to produce a specified output for a particular
customer or market. […] A process is thus a specific ordering of work activities across time
and place, with a beginning, an end, and clearly identified inputs and outputs: a structure for
action.

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_2

11

12 2 Introduction to Business Processes, BPM, and BPM Systems

In both cases, the main focus is on the “output” of the actions that must take place.
The problem is that there is no mention to the originators (i.e., the executors) of such
activities and how they are interoperating.

In [113], a business process is viewed as something that: (a) contains purposeful
activities; (b) is carried out, collaboratively, by a group of humans and/or machines;
(c) often crosses functional boundaries; (d) is invariably driven by the outside world.
van der Aalst, Weijters and Medeiros, in [167], gave attention to the originators of
the activities:

By process we mean the way an organization arranges their work and resources, for instance
the order in which tasks are performed and which group of people are allowed to perform
specific tasks.

Ko, in his “A Computer Scientist’s Introductory Guide to Business Process Man-
agement” [91], gave his own definition of business process:

A series or network of value-added activities, performed by their relevant roles or collabo-
rators, to purposefully achieve the common business goal.

A formal definition of business process is presented by Agrawal, Gunopulos and
Leymann in [3]:

A business process P is defined as a set of activities VP = {V1, . . . , Vn}, a directed graph
G P = (VP , EP), an output function oP : VP → N

k and ∀(u, v) ∈ EP a boolean function
f(u,v) = N

k → {0, 1}.

In this case, the process is constructed in the followingway: for every completed activ-
ity u, the value oP (u) is calculated and then, for every other activity v, if f(u,v)(oP (u))

is “true”, v can be executed. Of course, such definition of business process is hard to
be handled by business people, but is useful for formal modeling purposes.

More general definitions are given by standards and manuals. For example, the
glossary of the BPMN manual [112] describes a process as “any activity performed
within a company or organization”. The ISO 9000 [125] presents a process as:

A set of activities that are interrelated or that interact with one another. Processes use
resources to transform inputs into outputs. Processes are interconnected because the out-
put from one process becomes the input for another process. In effect, processes are “glued”
together by means of such input output relationships.

Right now, no general consensus has been reached on a specific definition. This
lack is due to the size of the field and to the different aspects that every definition
aims to point out.

In the context of this work, it is not important to fix one definition: each definition
highlights some aspects of the global idea of business process. The most important
issues, that should be covered by a definition of business process, are:

1. there is a finite set of activities (or tasks) and their executions are partially ordered
(it’s important to note that not all the activities are mandatory in all the process
executions);

2. each activity is executed by one or more originators (can be humans or machines
or both);

2.1 Introduction to Business Processes 13

3. the execution of every activity produces some output (as a general notion, with
no specific requirement: it can be a document, a service or just a “flag of state”
set to “executed”) that can be used by the following activity.

This is not intended to be another new definition of business process, but it’s just a
list of the most important issues that emerge from the definitions reported above.

Representation of Business Processes

Closely related to Business Processes is Business Process Management (BPM). van
der Aalst, ter Hofstede and Weske, in [161], define BPM as:

Supporting business processes using methods, techniques, and software to design, enact,
control, and analyze operational processes involving humans, organizations, applications,
documents and other sources of information.

From this definition, it clearly emerges that two of the most important aspects of
BPM are design and documentation. The importance of these two tasks is clear if
one thinks about the need to communicate some specific information on the process
that has been modeled. The main benefits of adopting a clear business model can
summarized in the following list:

• it is possible to increase the visibility of the activities, that allows the identifica-
tion of problems (e.g. bottlenecks) but also areas of potential optimization and
improvement;

• grouping the activities in “department” and grouping the persons in “roles”, in
order to better define duties, auditing and assessment activities.

For the reasons just explained, some characteristics of a process model can be
identified. The most important one is that a model should be unambiguous, in the
sense that the process is precisely described without leaving uncertainties to the
potential reader.

There are many languages that allow the modeling of systems and business
processes. The most used formalisms for the specification of business processes
have in common to be graph-based representations, so that nodes, typically, repre-
sent the process tasks (or, in some notations, also the states and the possible events
of the process); arcs represent ordering relations between tasks (for example, an arc
from node n1 to n2 represents a dependency in the execution so that n2 is executed
only after n1). Two of the most important graph based languages are: Petri nets [111,
118, 146, 188] and BPMN [112]1.

1Another language for the definition of “processes” is, for example, the Π -calculus [115, 185]:
a mathematical framework for the definition of processes whose connections vary based on the
interaction. Actually, it is not used in business contexts and by non-expert users because of its
complexity. With other similar languages (such as Calculus of Communicating Systems, CCS
and Communicating Sequential Processes, CSP) the situation is similar: in general, mathematical
approaches are suitable for the definition of interaction protocols or for the analysis of procedures
(such as deadlock identification) but not for business people.

14 2 Introduction to Business Processes, BPM, and BPM Systems

2.1.1 Petri Nets

Petri nets, proposed in 1962 in the Ph.D. thesis of Carl Adam Petri [119], constitute
a graphical language for the representation of a process. In particular, a Petri net is
a bipartite graph, where two types of nodes can be defined: transitions and places.
Typically, transitions represent activities that can be executed, and places represent
states (intermediate or final) that the process can reach. Edges, always directed, must
connect a place and a transition, so an edge is not allowed to connect two places or two
transitions. Each place can contain a certain number of tokens and the distribution of
the tokens on the network is called “marking”. In Fig. 2.1 a small Petri net is shown;
circles represent places, squares represent transitions.

Fig. 2.1 Petri net example, where some basic patterns can be observed: the “AND-split” (activity
B), the “AND-join” (activity E), the “OR-split” (activity A) and the “OR-join” (activity G).

Petri nets have been studied in depth frommany points of view, such as from their
clear semantic to a certain number of possible extensions (such as time, color, …).
A formal definition of Petri net, as presented, for example, in [145], is the following:

Definition 2.1 (Petri net). A Petri net is a tuple (P, T, F)where: P is a finite set of
places; T is a finite set of transitions, such that P∩T = ∅, and F ⊂ (P×T)∪(T ×P)

is a set of directed arcs, called flow relation.

The “dynamic semantic” of a Petri net is based on the “firing rule”: a transition
can fire (i.e., be executed) if all its “input places” (places with edges entering into
the transition) contain at least one token. The firing of a transition generates one
token for all its “output places” (places with edges exiting from the transition). The
distribution of tokens among the places of a net, at a certain time, is called “marking”.
With this semantic, it is possible to model many different behaviors, for example,
in Fig. 2.2, three basic templates are proposed. The sequence template describes the
causal dependency between two activities (in the figure example, activity B requires
the execution of A); the AND template represents the concurrent branching of two
or more flows (in the figure example, once A is terminated, B and C can start, in
no specific order and concurrently); the XOR template defines the mutual exclusion
of two or more flows (in the figure example, once A is terminated, only B or C can
start). Figure2.3 proposes the same process of Fig. 2.2 with a different marking (after
the execution of activities A, B and C).

An important subclass of Petri nets is the Workflow nets (WF-net), whose most
important characteristic is to have a dedicated “start” and “end”:

2.1 Introduction to Business Processes 15

(a) Sequence template. (b) AND template. (c) XOR template.

Fig. 2.2 Some basic workflow templates that can be modeled using Petri net notation.

Fig. 2.3 The marked Petri net of Fig. 2.1, after the execution of activities A, B and C . The only
enabled transition, at this stage, is D.

Definition 2.2 (WF-net). A WF-net is a Petri net N = (P, T, F) such that:

a. P contains a place i with no incoming arcs (the starting point of the process);
b. P contains a place o with no outgoing arcs (the end point of the process);
c. if we consider t /∈ P ∪ T , and we use it to connect o and i (so to obtain the so

called “short-circuited” net: N = (P, T ∪ {t}), F ∪ {(o, t), (t, i)}), the new net
is strongly connected (i.e. there is a direct path between any pair of nodes).

2.1.2 BPMN

BPMN (Business ProcessModeling andNotation) [112] is the result of an agreement
among multiple tool vendors, that agreed on the standardization of a single notation.
For this reason, now it is used in many real cases and many tools adopt it daily.
BPMN provides a graphical notation to describe business processes, which is, at the
same time, intuitive and powerful (it is able to represent complex process structure).
It is possible to map a BPMN diagram to an execution language, BPEL (Business
Process Execution Language).

The main components of a BPMN diagram, presented in Fig. 2.4, are:

Events: defined as “something that “happens” during the course of a process”; typi-
cally they have a cause (trigger) and an impact (result). Each event is represented
with a circle (containing an icon, to specify some details), as in Fig. 2.4(d). There
are three types of events: start (single narrow border), intermediate (single thick
border) and end (double narrow border).

Activities: this is the generic term that identifies the work done by a company. In the
graphical representation they are identified as rounded rectangles. There are few

16 2 Introduction to Business Processes, BPM, and BPM Systems

Fig. 2.4 Example of some basic components, used to model a business process using BPMN
notation.

types of activity like tasks (a single unit of work, Fig. 2.4(a)) and subprocesses
(used to hide different levels of abstraction of the work, Fig. 2.4(e)).

Gateway: structure used to control the divergences and convergences of the flow
of the process (fork, merge and join). An internal marker identifies the type of
gateway, like “exclusive” (Fig. 2.4(b), on the left), “event based”, “inclusive”,
“complex” and “parallel” (Fig. 2.4(b), on the right).

Sequence and Message Flows and Associations: connectors between components
of the graph. A sequence flow (Fig. 2.4(c), top) is used to indicate the order
of the activities. Message flow (Fig. 2.4(c), bottom) shows the flow of the mes-
sages (as they are prepared, sent and received) between participants. Associations
(Fig. 2.4(c),middle) are used to connect artifactswith other elements of the graph.

Beyond the components just described, there are also other entities that can appear
in a BPMN diagram, such as artifacts (e.g. annotations, data objects) and swimlanes.

Figure2.5 proposes a simple process fragment. It starts on Friday, executes two
activities (in the figure, “Receive Issue List” and then “Review Issue List”) and then
checks if a condition is satisfied (“Any issues ready”); if this is the case, a discussion
can take place a certain number of times (“Discussion Cycle” sub process), otherwise
the process is terminated (and the “End event” is reached, marked as a circle with
the bold border). There are, moreover, intermediate events (marked with the double
border): the one named A is a “throw event” (if it is fired, the flow continues to the

2.1 Introduction to Business Processes 17

Fig. 2.5 A simple process fragment, expressed as a BPMN diagram. Compared to a Petri net (as
in Fig. 2.1), it contains more information and details but it is more ambiguous.

intermediate catch event, named A, somewhere in the process but not represented in
this figure); the B is a “catch event” (it waits until a throw events fires its execution).

2.1.3 YAWL

YAWL (Yet Another Workflow Language) [159] is a workflow language born from
a rigorous analysis of the existing workflow patterns [160].

The starting point for the design of this language is the identification of the dif-
ferences between many languages: out of this, authors collected a complete set of
workflow patterns. This set of possible behaviors inspired authors to develop YAWL,
which starts from Petri net and adds some mechanisms to allow a “more direct and
intuitive support of the workflow patterns identified” [160]. However, as authors
stated, YAWL is not a “macro” package on top of high-level Petri nets: it is possible
to map a YAWL model to any other Turing complete language.

Figure2.6 presents the main components of a YAWL process. The main compo-
nents of a YAWL model are:

Task: represents an activity, as in Fig. 2.6(a). It is possible to execute multiple
instances of the same task at the same time (so to have many instances of the
process running in parallel). Composite tasks are used to define hierarchical
structure: a composite task is a container of another YAWL model.

Conditions: a condition Fig. 2.6(b) in YAWL has the same meaning of “place” for
Petri nets (i.e. the current state of the process). There are two special conditions,
i.e., “start” (with a triangle inscribed) and “end” (with a square inscribed), like
for WF-nets (Definition2.2).

Splits and Joins: a task can have a particular split/join semantic. In particular, it
is possible to have tasks with an AND (whose behavior is the same of the Petri

18 2 Introduction to Business Processes, BPM, and BPM Systems

(a) Atomic and
composite
tasks.

(b) Conditions
(general, start,
end).

(c) Splits and join tasks (AND,
XOR, OR).

...

(d) Cancelation area.

Fig. 2.6 Main components of a business process modeled in YAWL.

net case, presented in Fig. 2.2(b)), XOR (same as Petri net, Fig. 2.2(c)) or OR
semantic. In the last case one or more outgoing arcs are executed2.

Cancellation Areas: all the tokens in elements within a cancellation area (the dotted
area in Fig. 2.6(d)), are removed after the activation of the corresponding task
(whose enabling does not depend on the tokens on the cancellation area).

2.1.4 Declare

Imperative process modeling languages such as BPMN, Petri nets, etc., are very
useful in environments that are stable and where the decision procedures can be
predefined. Participants can be guided according to such process models. However,
they are less appropriate for environments that are more variable and that require
more flexibility. Consider, for instance, a doctor in a hospital dealing with a variety
of patients that need to be handled in a flexible manner. Nevertheless, some general
regulations and guidelines can be followed. In such cases, declarative process mod-
els are more effective than the imperative ones [122, 156, 187]. Instead of explicitly
specifying all possible sequences of activities in a process, declarativemodels implic-
itly define the allowed behavior of the process with constraints, i.e., rules that must be
followed during execution. In comparison to imperative approaches, which produce
“closed” models (what is not explicitly specified is forbidden), declarative languages
are “open” (everything that is not forbidden is allowed). In this way, models offer
flexibility and at the same time remain compact.

While in imperative languages designers tend to forget incorporating some possi-
ble scenarios (e.g., related to exception handling), in declarative languages, design-
ers tend to forget certain constraints. This leads to underspecification rather than
overspecification, i.e., people are expected to act responsibly and are free to select
scenarios that may seem out-of-the-ordinary at first sight.

2In the case of OR-join, the semantic is a bit more complex: the system needs only one input token,
however if more then one token is coming, the OR-join synchronizes (i.e. waits) them.

2.1 Introduction to Business Processes 19

Fig. 2.7 Declare model consisting of six constraints and eight activities.

Figure2.7 shows a simple Declare model [120, 121] with some illustrative con-
straints for an insurance claim process. The model includes eight activities (depicted
as rectangles, e.g., Create Questionnaire) and six constraints (shown as connectors
between the activities, e.g., not co-existence). The not co-existence constraint indi-
cates that Low Insurance Check and High Insurance Check can never coexist in
the same trace. On the other hand, the co-existence constraint indicates that if Low
Insurance Check and Low Medical History occur in a trace, they always co-exist.
If High Medical History is executed, High Insurance Check is eventually executed
without other occurrences of High Medical History in between. This is specified
by the alternate response constraint. Moreover, the not succession constraint means
that Contact Hospital cannot be followed by High Insurance Check. The precedence
constraint indicates that, if Receive Questionnaire Response is executed, Send Ques-
tionnaire must be executed before (but if Send Questionnaire is executed this is not
necessarily followed by Receive Questionnaire Response). Finally, if Create Ques-
tionnaire is executed, it is eventually followed by Send Questionnaire as indicated
by the response constraint.

More details on the Declare language will be provided in Subsect. 15.2.1.

2.1.5 Other Formalisms

The language for the definition of business processes, brieflypresented in the previous
sections, are only a very small fragment of all the available ones. In Table2.1 some
standards are proposed, with their background (either academic or industrial), the
type of notation they adopt, if they are standardized somehow, and their current status.

2.2 Business Process Management Systems

It is interesting to distinguish, from a technological point of view, business process
design and business process modeling: the first refers to the overall process design
(and all its activities); the latter refers to the actual way of representing the process
(from a “language” point of view).

In the Gartner’s position document [80], a software is defined “BPM-enabled”
if allows to work on three parts: integration, runtime environment and rule engine.

http://dx.doi.org/10.1007/978-3-319-17482-2_15

20 2 Introduction to Business Processes, BPM, and BPM Systems

Table 2.1 Extraction from
Table 2 of [91] where some
prominent BPM standards,
languages, notations and
theories are classified.

Language Background Notation Standardized Current status

BPDM Industry Interchange Yes Unfinished

BPEL Industry Execution Yes Popular

BPML Industry Execution Yes Obsolete

BPMN Industry Graphical Yes Popular

BPQL Industry Diagnosis Yes Unfinished

BPRI Industry Diagnosis Yes Unfinished

ebXML BPSS Industry B2B Yes Popular

EDI Industry B2B Yes Stable

EPC Academic Graphical No Legacy

Petri nets Academic Theory/Graphical N.A. Popular

Π-Calculus Academic Theory/Execution N.A. Popular

Rosetta-Net Industry B2B Yes Popular

UBL Industry B2B Yes Stable

UML A.D. Industry Graphical Yes Popular

WSCI Industry Execution Yes Obsolete

WSCL Industry Execution Yes Obsolete

WS-CDL Industry Execution Yes Popular

WSFL Industry Execution No Obsolete

XLANG Industry Execution No Obsolete

XPDL Industry Execution Yes Stable

YAWL Academic Graphical/Execution No Stable

When all these aspects are provided, the system is called “BPMS”. These aspects
are provided if the system contains:

• an orchestration engine, that coordinates the sequencing of activities according to
the designed flow and rules;

• a business intelligence and analysis tools, that analyze data produced during the
executions. An example of this kind of tools is the Business Activity Monitoring
(BAM) that provides real-time alerts for a proactive approach;

• a rule engine, that simplifies the changes to the process rules and provides more
abstraction from thepolicies and from thedecision tables, allowingmoreflexibility;

• a repository that stores process models, components, documents, business rules
and all the information required for the correct execution of the process;

• tools for simulation and optimization of the process, that allow the designer to
compare possible new process models with the current one in order to get an idea
of the possible impact into the current production environment;

• an integration tool, that links the process model to other components in order to
execute the process activities.

From a more pragmatic perspective, the infrastructure that seems to be the best
candidate in achieving all the objectives indicated by BPM is the Service-Oriented
Architecture (SOA) [54, 114, 117].

With the term SOA we refer to a model in which automation logic is decomposed
into smaller, distinct units of logic. Collectively, these units constitute a larger piece
of business logic; individually these can be distributed among different nodes. An
example of such composition is presented in Fig. 2.8.

2.2 Business Process Management Systems 21

Fig. 2.8 Example of process handledbymore thanone service. Each service encapsulates a different
amount of logic. This figure is inspired by Fig. 3.1 in [54].

In [140], a clear definition of “Business Service” is presented:

A discrete unit of business activity, with significance to the business, initiated in response
to a business event, that can’t be broken down into smaller units and still be meaningful
(atomic, indivisible, or elementary).

This term indicates the so-called “internal requirements” of an Information System,
in opposition to the “external” ones, identified as Use Cases: a single case in which
a specific actor will use a system to obtain a particular business service from one
system. In authors’ opinion, this separation simplifies the identification of the require-
ments and can be considered a methodological approach to the identification of the
components of the system.

In the context of SOA, one of the most promising technologies is represented by
Web services. In this case, a Web service is going to represent a complex process
that can span even more organizations. With theWeb services composition, complex
systems can be built according to the given process design; however, this is still
a young discipline and industries should be more involved in the standardization
process.

Chapter 3
Data Generated by Information Systems
(and How to Get It)

The information systems described in Sect. 2.2, typically, record traces of each exe-
cuted activity. All this information is then collected and stored in so called log files.
There are several reasons for keeping a history of what happened: just to mention an
example, it can be used to analyze errors that may occur (i.e., debug).

Process mining techniques use those logs as input for fact-based analyses, as
reported in Chap.5. Although most of the time information systems record data in a
structured way, it may happen to deal with unstructured data. Information Extraction
techniques are useful to give a structure to this kind of data. This chapter briefly
reports the basic notions that characterize this problem.

3.1 Information Extraction from Unstructured Sources

The task of extracting information from unstructured sources is called Information
Extraction (IE) [33, 42, 85]. These techniques can be considered as a type of Informa-
tion Retrieval [103] in the sense that they aim at extracting automatically structured
information from unstructured or semi-structured documents. Typically the core of
IT techniques is based on the combination of Natural Language Processing tools, lex-
ical resources and semantic constraints; so to extract, from text documents, important
facts on some general entities (that the system needs to know a priori).

The information extraction systems can be divided into twomain groups, based on
their approach type: (i) learning systems; (i i) knowledge engineering systems. The
first requires a certain number of already-annotated texts that are used as training set
for some learning algorithm. The system can obtain a certain number of information
that can then use with new texts. In the case of knowledge engineering systems, the
responsibility for the accuracy of the extraction is assigned to the developer that has
to construct a set of rules (starting from some example documents) and to develop
the system.

A typical information extraction systemencompasses the components presented in
Fig. 3.1. The first component is responsible for the “tokenization”: this phase consists

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_3

23

http://dx.doi.org/10.1007/978-3-319-17482-2_2
http://dx.doi.org/10.1007/978-3-319-17482-2_5

24 3 Data Generated by Information Systems (and How to Get It)

Fig. 3.1 Typical modules of an Information Extraction System, figure extracted from [85].

in splitting the text in sentences or, more generally, in “tokens”. This problem cannot
be solved for some type of languages (such as Chinese or Japanese). The second
phase is composed of two parts: the morphological processing is fundamental for
languages such German, where different nouns can be agglomerated into a single
word. The lexical analysis consists in assigning to each token its lexical role in the
sentence; the most important job is the identification of proper names. Typically, this
phase extensively uses dictionary of words and roles. The parsing phase consists of
removing from the text parts that one is not interested in and that are characterized
by a particular structure (such as numbers, dates, …). The coreference module is
useful for identifying different ways of referring to the same entity. Typical problems
handled by this module are:

1. name-alias coreference: names and possible variants;
2. pronoun-antecedent coreference: pronouns (like “he” or “she”) are pointed to the

correct entity;
3. definite description coreference: when a description is used instead of the name

of an entity (e.g. “Linux” and “the Linus Torvalds’ OS”).

The domain-specific analysis is the most important step, but is also the most ad hoc
one: it is necessary to define rules for each specific case in order to extract common
behavior. These rules can be generated manually (Knowledge Engineering) or with
machine learning approaches. The last step, the merging of partial results, consists
in creating a single sentence from others, describing the same fact. This step is not
necessary, but can help in presenting the outputs.

3.2 Evaluation with the F1 Measure

Thebasic approaches used to evaluate the results of an information retrieval algorithm
are based on the concepts of true/false positives/negatives. Table3.1 presents these
basic notions, by comparing the relevant and retrieved documents.

On top of these concepts, it is possible to define the concepts of precision and
recall. The first represents the number of documents that are “retrieved” with respect
to the number of documents that are actually relevant; the latter represents the number
of relevant results that have been returned:

3.2 Evaluation with the F1 Measure 25

Table 3.1 Tabular
representation of true/false
positives/negatives. True
negatives are colored in gray
since they will not be
considered.

Relevant Not relevant

Retrieved True positives (tp) False positives (fp)
Not retrieved False negatives (fn) True negatives (tn)

Precision = # Relevant, Retrieved

Retrieved
= tp

tp+ fp

Recall = # Relevant, Retrieved

Relevant
= tp

tp+ fn

One of the most commonly used metric for the evaluation of IR techniques is the
F1 [103]. This measure consists in the harmonic mean between precision and recall:

F1 = 2 · Precision · Recall
Precision+ Recall

.

Chapter 4
Data Mining for Information System Data

Typically, the term “data mining” refers to the exploration and the analysis of large
quantities of data, in order to discover meaningful patterns and rules.

In this book, we will make use of a particular kind of data mining technique
known as clustering. We will present this technique up to the concepts and defini-
tions needed later. Some other common data mining techniques will be presented as
well but, for more information about these techniques and data mining in general,
we refer to [126]. Typical data mining tasks, as reported in [13], are: classification,
examining the features of a “new” object in order to assign it to one of the predefined
set of classes (discrete outcomes); estimation, similar to classification, but deals with
continuously valued outcomes (e.g. regression models or Neural Networks); affinity
grouping (or association rules), determining how things can be grouped together (for
example in a shopping cart at the supermarket); clustering, the task of segmenting a
heterogeneous population into a certain number of homogeneous clusters (no prede-
fined classes); profiling, simplification of the description of complicated databases
in order to explain some behaviours (e.g. decision trees).

In the next sections one technique per task will be briefly presented.

4.1 Classification with Nearest Neighbor

The idea underpinning the nearest neighbor algorithm is that the properties of a
certain instance are likely to be similar to the ones in its “neighborhood”. To apply
this idea, a distance function is necessary, in order to calculate the distance between
any two objects. Typical distance functions are the “Manhattan distance” (dM) and
the “Euclidean distance” (dE):

dM (a,b) =
n∑

i=1

|bi − ai | dE (a,b) =
√√√√

n∑

i=1

(bi − ai)
2

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_4

27

28 4 Data Mining for Information System Data

where a and b are two vectors in the n-dimensional space. Graphical representations
of these two distances are reported in Fig. 4.1. This space is “populated” with all the
pre-classified elements (examples): each object has a label that defines its class.

Fig. 4.1 Graphical representations of “Manhattan distance” (dM) and “Euclidean distance” (dE)
in a two dimensional space.

The idea is that the classification is obtained selecting the neighborhood of the
new instance (typically, a parameter k indicates to select the first k nearest objects to
the current one). Then the class of the new instance is selected as the most common
class with respect to the current neighborhood. For example, if k = 1 then the class
of the new instance is the same class of the nearest one already classified.

4.2 Neural Networks Applied to Estimation

Artificial Neural Networks are mathematical models that typically are represented
as directed graphs where each vertex is a “neuron” that can be directly connected
to other neurons. The function of a connection is to propagate the activation of
one unit to the others. Each connection has a weight that determines the strength of
the connection itself. There are three types of neurons: input (whose signals collect
the external input), output (that will produce the result) and hidden (the ones that are
between the input and the output neurons), as presented in the example of Fig. 4.2.

Each unit has an activation function that combines and transforms all its input
values into signal for its output. A typical activation function is the one where the
combination of all its input has to reach a certain threshold in order to increment
the output. When the combination of input is above the threshold, the output is very
high.

The training of the network aims at defining the weights of the connections be-
tween units (e.g.w1,1 andwn,m in Fig. 4.2) so that, when a new instance is presented
to the model, the output values can be calculated and returned as output. The main
drawback of this approach is that the trained model is described only in terms of a
set of weights that are not able to explain the training data.

4.3 Association Rules Extraction 29

Fig. 4.2 Example of Neural Network with an input, a hidden and an output layer. This network
receives input from n neurons and produces output in one neuron.

4.3 Association Rules Extraction

An example of an association rule is “if a customer purchases onions and potatoes
than, the same customer, probably will purchase also a burger”.

One of the most common algorithm to extract association rules is Apriori [4]
that, given a set of transactions (called itemset), tries to find subsets of item that
are common in many other itemsets (the basic idea is that a subset of a frequent
itemset must also be a frequent itemset). These “frequent subsets” are incrementally
extended until a termination condition is reached (i.e. there are no more possible
extensions).

Starting from the frequent itemset B, the generation of the rules is done consid-
ering all the combination of subsets L and H = B − L . A rule L ⇒ H is added
if its confidence (i.e. how much H is observed, given the presence of L) is above a
threshold.

4.4 Clustering

The term clustering refers to the problem of grouping together objects. In particular,
elements of each group, called cluster, are supposed to be similar to each other, with
respect to some distance measure (low intra-cluster distance). Moreover, elements
belonging to different clusters are required to have low similarity (high inter-cluster
distance).

4.4.1 Clustering with Self-organizing Maps

Self-organizing maps (SOM) can be considered as a variant of Neural Network. It
has an input and an output layer, that consists of many units: each output unit is

30 4 Data Mining for Information System Data

connected to all the units in the input layer. Since the output layer is organized as a
“grid” it can be graphically visualized. The most important difference with respect to
Neural Networks is that Self-OrganizingMaps use neighborhood function in order to
preserve the topological properties of the input space. This is the main characteristic
of SOM: elements that are somehow “close” in the input space should enable neurons
that are topologically close in the output layer. To achieve this result, when a training
element is learned, not only theweights of thewinning output neuron are adjusted, but
also the weights for units in its immediate neighborhood are adjusted to strengthen
their response to the input.

The training of a SOM makes possible to group together elements that are close
but, as in the case of Neural Networks, there is no way to know the reasons that lead
to such clustering.

4.4.2 Clustering with Hierarchical Clustering

Another technique to perform clustering is Hierarchical Clustering. In this case,
the basic idea is to create an hierarchy of clusters. Clearly, a hierarchy of clusters is
muchmore informative with respect to unrelated sets of clusters1. There are two pos-
sible approaches to implement Hierarchical Clustering: Hierarchical Agglomerative
Clustering (HAC) and Hierarchical Divisive Clustering (HDC).

In HAC, at the beginning, each element constitutes a singleton cluster; and each
iteration of the approachmerges the closest clusters. The procedure ends when all the
elements are agglomerated into a single cluster. HDC adopts the opposite approach:
initially all elements belong to the same cluster so that each iteration splits the clusters
until all elements constitute a singleton cluster.

The typicalway to represent the result ofHierarchicalClustering is using a dendro-
gram, as shown in Fig. 4.3. Every time two elements are merged, the corresponding
lines, on the dendrogram, aremerged too. The numbers close to eachmerge represent
the values of the distance measure for the two merged clusters.

To extract unrelated sets of clusters out of a dendrogram (as in flat clustering), it
is necessary to set a cut (or threshold). This cut represents the maximum distance
allowed to merge clusters. Therefore, only clusters with a distance lower than the
threshold are considered as grouped. In the example of Fig. 4.3, two possible cuts
are reported. Considering the cut at 0.5, these are the clusters extracted:

{1} {2, 3} {4} {5, 6} {7} {8} {9} {10}.

Instead, the cut at 0.8 generates only two clusters:

{1, 2, 3, 4, 5, 6} {7, 8, 9, 10}.

1 In literature, sometimes, techniques generating a hierarchy of clusters and techniques generating
unrelated sets of clusters are identified, respectively, as hierarchical clustering and flat clustering.

4.4 Clustering 31

Fig. 4.3 Dendrogram example, with 10 elements. Two possible cuts are reported with red dotted
lines (corresponding to values 0.5 and 0.8) (Color figure online).

Fig. 4.4 A decision tree that can detect if the weather conditions allow to play tennis.

4.5 Profiling Using Decision Trees

Decision trees are data structure (trees, indeed) that are used to split collections of
records in smaller subsets, by applying a sequence of simple decision rules.

The construction of a decision tree is performed top-down, choosing an attribute
(the next best) and splitting the current set according to the values of the selected
attribute. With each iterative division of the set, the elements of the resulting subsets
become more and more similar one another. In order to select the “best” attribute a
typical approach is to choose the one that splits the set into homogeneous subsets,
however, there are different formulations of such definition.

32 4 Data Mining for Information System Data

An interesting characteristic of decision trees is that each path from the root to a
leaf node can be considered as a conjunctions of tests on the attributes values; more
paths towards the same leaf value encode disjunctions of conjunctions, so a logic
representation of the tree can be obtained.

Figure4.4 represents a decision tree that can detect if the weather conditions allow
to play tennis. The logic representation of the tree is:

(outlook = ’sunny’ ∧ humidity = ’normal’) ∨
(outlook = ’overcast’) ∨ (outlook = ’rain’ ∧ wind = ’weak’)

This peculiarity of decision trees improves their understandability by human beings
and, at the same time, results fundamental in order to be processed by third-party
systems (e.g. algorithms that need this information).

Chapter 5
Process Mining

Process mining is an emerging research field that originates from two areas: machine
learning and data mining on one hand, process modelling on the other [148]. The
general idea of process mining is to take, as input, some event data (e.g., event log
files) and perform a fact-based analysis of process executions.

A typical example of possible fact-based analysis is control-flow discovery. The
output entity of a control-flow discovery algorithm is a model of a “process”, that
is a description of how to perform an operation. More details on the definition of
process have been presented in Sect. 2.1.

Typically, a process is described within the documentation of the company, in
terms of “protocols” or “guidelines”. However, these ways of representing the work
(using natural language or ambiguous notations) are not required to be informative
in terms of activities executed in the reality.

In order to discover how an industrial production process is actually performed,
one could “follow” the product along the assembly line and see which steps are
involved, their durations, bottlenecks, and so on. In a general context of business
process, this observation is typically not possible due to a series of causes, for ex-
ample:

• the process is not formalized (the knowledge about how to execute it, is tacitly
spread among all workers involved);

• there are toomany production lines, so that a single person is not able to completely
follow the work;

• the process is not going to produce physical entries, but services of information;
• and other similar problems.

However, most of such processes are executed with the support of information
systems, and these systems –typically– record all the operations that are performed
in some “log files”.

In Fig. 5.1, there is a representation of the main components involved in process
mining and the interactions among them. First of all, the incarnation aspect (on the
top right of the figure) represents the information system that supports the actual
operational incarnation of the process. Such incarnation can be different from the

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_5

33

http://dx.doi.org/10.1007/978-3-319-17482-2_2

34 5 Process Mining

ideal process definition and describes the actual process, as it is being executed.
As we said, the information system records all the operations that are executed in
some event logs. These observations are a fundamental requirement for the analysis
using process mining techniques. Such techniques can be considered as the way of
relating event logs (what is happening) to the analytical model of the process (what
is supposed to happen). Analytical models (depicted on the left side of Fig. 5.1,
into the imagination aspect) are supposed to describe the process, but an operational
model is needed to add the detailed and concrete information that are necessary for
its execution.

“Process mining” refers to the task of discovering, monitoring and improving real
processes (as they are observed in the event logs) with the extraction of knowledge
from the log files. It is possible to distinguish at least three types of mining (pre-
sented in Fig. 5.1 as grey boxes with arrows describing the interaction with other
components):

1. Control-flow discovery aims at construction of a model of the process, starting
from the logs (an a priori model is not required) [168];

2. Conformance analysis: starting from an a priori model, conformance algorithms
try to fit the observations of the actual performed process in the original model
and vice versa, as, for example, presented in [132];

3. Extension of a model, already available, in order to add information on the
decision points (as presented in [131]) or on the performance of the activities.

Fig. 5.1 Representation of the three main perspectives of process mining, as presented in Fig. 4.1
of [72].

Closely to the possible ways of performing the mining there are the three possible
perspectives: the control-flow (that represents the ordering of the activities); the
organizational or social (that focuses on which performers are involved and how
are they related) and the case (how data elements, related to the process instance,
evolve).

http://dx.doi.org/10.1007/978-3-319-17482-2_4

5.1 Process Mining as Control-Flow Discovery 35

5.1 Process Mining as Control-Flow Discovery

This section provides some information on the state of the art for what concerns
process mining and, in particular, control-flow discovery algorithms. Since the idea
of this section is to provide a “history” of the field, the contributions are presented
according to chronological order.

Figure5.2 depicts a timeline, where each point indicates one or more approaches
published. It is worthwhile to notice the “evolution” of the algorithms (the firsts gen-
erate simple models, without considering noise as a problem; the latest ones produce
complexmodels and try to dealmany problems). This is not intended as an exhaustive
list of all control-flow algorithms, so it contains only the most important ones.

Fig. 5.2 Timeline with the control-flow discovery algorithms discussed in the state of the art of
this work.

Cook and Wolf

The first work in the field of process mining is recognized in the Ph.D. Thesis of
Jonathan Cook [35] and in other works co-authored with Alexander Wolf et al.
[36–40]. The main contribution of the work consists of three different algorithms
based on three different approaches: RNet, KTail and Markov.

All those algorithms are implemented in a tool called Balboa [39]. Balboa is a
tool for analyzing data generated from software processes: the basic idea is to work
on “events databases”.

They define an “event” as an action that can be identified and that is instantaneous
(e.g. the invocation, by a user, of a software). For this reason, an activity that lasts
for a certain period of time is described in terms of two events (“start” and “end”).

36 5 Process Mining

RNet. The RNet algorithm is based on a Recurrent Neural Network [109]. This
type of networks can be seen as a graph with cycles where each node is a “network
unit” (such that, given an input, it can calculate the corresponding output) and each
node is weighted (initially, the weight is low). This network will calculate the output
values for all its components at time t and then this output is used as input for
the network at time t + 1. With such topology it is possible to model the behavior
of an automaton: the final result is not computed on the basis of the input only,
but also on the basis of the previous activity of the hidden neurons. The foremost
advantage of such technique is that it is entirely statistical, so it is very robust to
noise. The main drawback, however, is that, in order to be entirely exploited, this
approach requires also “negative examples” (examples that can not be generated by
the process); unfortunately, in real cases, it is very hard to obtain this information.

KTail. The second approach, KTail, differently from the previous one, is entirely
algorithmic. The basic notion, in the whole system, is that a “state” is defined on
the basis of all the possible future behavior. For example, two strings (as series of
activities) can have a common prefix and, at a certain character, they can diverge one
from the other. In this case, we have two strings with “a common history but different
futures”. Conversely, if two different stories shares the same future then they belong
to the same equivalence class, that represents the automaton states (actually, the final
model constructed is an automaton).

Markov. The last approach presented into the Balboa framework is called Markov.
This is a hybrid approach, both statistical and algorithmic. AMarkovmodel is used to
find the probabilities of all the possible productions and, algorithmically, those prob-
abilities are converted into an automaton. The assumptions made by this approach
are the following:

• the number of states of the current process is finite;
• at each time, the probability that the process is in one of its states depends on the
current state (Markov property);

• the transition probabilities do not change over time;
• the starting state of the process is probabilistically determined.

The last approach above-mentioned, Markov, seems to be the one with the best
results, also because of the probabilistic approach, that allows the procedure to be
noise tolerant.

Agrawal et al.

The approach developed by R. Agrawal, D. Gunopulos and F. Laymann [3] is con-
sidered the first process mining algorithm in the context of BPM. In particular, the
aim of their procedure is to generate a directed graph G = (V, E), where V is the
set of process activities and E represents the dependencies among them. Initially,
E = ∅, and the algorithm will try to build a series of boolean function f s such that:

5.1 Process Mining as Control-Flow Discovery 37

∀ (u, v) ∈ E f(u,v) : N
k → {0, 1}

that, starting from the output of the activity u, indicates if v can be the next one.
In this approach, a process execution log is a set of tuples (P, A, E, T, O) where

P is the name of the process; A is the name of the activity; E ∈ {start,end} is the
event type; T is the time the action took place; O = o(A) is the output produced by
the activity A, if E = end, otherwise it is a null value.

Dependencies between activities are defined in a straightforward manner: B de-
pends on A if, observing the real executions, it is very common that A is followed by
B and never the vice versa. Since all the activities are thought as a time interval, it
is important to point the meaning of “A is followed by B”. The definition describes
two possible cases: (i) B starts after A is finished; (ii) an activity C exists such that
C follows A and B follows C .

Thewhole procedure can be divided into twomain phases. The first part deals with
the identification of the dependencies between activities. This is done observing the
logs and adding the edge (u, v) to E every time u ends before v starts. A basic support
for the noise is provided by counting the number of times every edge is observed and
excluding from the final model all the edges that do not reach a threshold (parameter
of the procedure). A problem that can emerge is the configuration of the threshold
value. A solution, proposed in the paper, is to convert the threshold into an “error
probability” ε < 1

2 . With this probability, it is possible to calculate the minimum
number of observations required.

The second step of the approach concerns the definition of the conditions required
in order to make edges followed each other. The procedure presented in the paper
defines the function f(u,v) which uses the output values produced as output by the
activities: for all the executions of activity u if, in the same process instance, activity
v is executed, then the value o(u) is used as a “positive example”. The set of values
produced can be used as training set for a classification task. The paper suggests
to use decision trees [109] for learning simple rules that can be also understood by
human beings.

Herbst and Karagiannis

In the approach presented by Herbst and Karagiannis in [77-79] a workflow W is
defined as W = (VW , tW , fW , RW , gW , PW) where:

• VW = {v1, . . . , vn} is a set of nodes;
• tW (vi) ∈ {Start,Activity,Decision,Split,Join,End} indicates the “type” of a node;
• fW : VACT → A is a function for the assignment of nodes to activities;
• RW ⊆ (VW × VW) is a set of edges, where each edge represents a successor
relation;

• gW : RW → COND are transition conditions;
• PW : RW → [0, 1] are transition probabilities.

38 5 Process Mining

with VX , for X ∈ {Start,Activity,Decision,Split,Join,End}, that denotes the subset
VX ⊆ VW of all nodes of type X .

With these definitions, the mining algorithm aims at discovering a “good approx-
imation” of the workflow that originated the observations.

The workflow is expressed in terms of Stochastic Activity Graph (SAG), that is
a directed graph where each node is associated to an activity (more nodes referring
to the same activity are allowed) and each edge (that represents a possible way
of continuing the process) is “decorated” with its probability. Additionally, each
node must be reachable from the start and the end must be reachable from every
node. The procedure can be divided in two phases: the identification of a SAG,
that is “consistent” with the set of process instances observed (the log), and the
transformation of the SAG into a workflow model.

In order to identify the SAG, the procedure described is very similar to the one of
Agrawal et at. [3], and it is based on the creation of a node for each activity observed;
the generation of edges is performed according to the dependencies observed in
the log.

Hwang and Yang

In the solution proposed by S. Y. Hwang eW. S. Yang [82], each activity is described
as a time interval. In particular, an activity is composed of three possible sub-events:

1. a start event that determines the beginning of the activity;
2. an end event that identifies the activity conclusion;
3. the possible write event used for the identification of the writings of the output

produced by the activity.

All these possible events are atomic, so it is not possible to observe two of them at
the same time.

The start and the end event are recorded in a triple that contains the name of the
activity, the case identifier and the execution time. The write events present the same
fields of the other two but, in addition, they contain also information on the written
variables and their values.

Two activities, belonging to the same instance, can be described as “disjoint”
or “overlapped”. They are disjoint if one starts after the end of the other; they are
overlapped if they are not disjoint. The aim of the approach is to find all the couples
of disjoint activities (X, Y) such that X is directly followed by Y : all those couples
are the candidates for the generation of the final dependency graph that represents
the discovered process. Another constructed set is the one with all the overlapped
activities. Starting from the assumption that two activities overlapped are not in a
dependency relation, the final model is constructed adding an edge between two
activities that are observed in direct succession and not overlapped.

In order to identify the noise in the log, the proposed approach describes other
relations among activities and it considers only the observations that exceed the value

5.1 Process Mining as Control-Flow Discovery 39

given as threshold. Moreover the output of each activity is proposed to be used for
the definition of the conditions for the splits.

Schimm

In the work by Guido Schimm [135, 136, 168], there is a definition of trace as a
set of events, according to the described life cycle of the activities. Such life cycle,
can be considered quite general and is proposed in Fig. 5.3. In the work, however,
only the events Start and Complete are considered, but these are sufficient for the
identification of parallelisms.

Fig. 5.3 Finite state machine for the life cycle of an activity, as presented in Fig. 1 of [136].

The language used for the representation of the resulting process is a block based
language [92] where every block can be: a sequence, a parallel operator, or an alter-
native operator. An example of a “mined model”, with activities a, b, c and d is:

A (P(S (a, b), (c, d)),S (P(c,S (b, a)), d))

whereS identifies the sequence operator,P the parallel and A the alternative. Of
course, the same process can be also graphically represented.

The procedure starts finding all the precedence relations, also the pseudo ones
(dependencies that maybe do not exist in the original model, that are due to some
random behavior such as delays); and then ends converting all them into the given
model. It is interesting to note that this approach aims only at describing the behavior
contained in the model, without any generalization.

There is a tool that implements the above-mentioned approach, and that can be
downloaded for free from the Internet1.

1At the website: http://www.processmining.de.

http://www.processmining.de

40 5 Process Mining

Van der Aalst et al.

The work by van der Aalst et al. [162, 169] is focused on the generation of a Petri net
model that can describe the log. The idea, formalized in an algorithm called “Alpha”,
is that some relations – if observed in the log – can be combined together in order to
construct the final model. These relations, between activities a and b, are:

• the direct succession a > b, when, in the log, sometime a compares before b;
• the causal dependency (or follow) a → b, when a > b and b ≯ a;
• the parallelism a‖b, when a > b and b > a;
• uncorrelation #, when a ≯ b and b ≯ a.

Given sets containing all the relations observed into the log, it is possible to combine
them generating a Petri net, following the rules presented in Fig. 5.4.

Some improvements to the original algorithm [151, 183] allow the mine of short
loops (loop of length one) and implicit places. This approach, independently from
its extensions, assumes that a log does not contain any noise and that it is complete

Fig. 5.4 Basic ideas for the translation of set of relations into Petri net components. Each component
caption contains the logic proposition that must be satisfied.

5.1 Process Mining as Control-Flow Discovery 41

with respect to the follow relation so, if an activity A is expected to be in the final
model directly before B, it is necessary that the relation A → B is observed, in the
log, at least one time. Moreover, as can be deduced, there is no statistical analysis of
the frequency of the activities. These three observations prevent the current approach
to be applied in any real context.

Golani and Pinter

As in other approaches, the one presented byMatiGolani andShlomit Pinter [66, 123]
considers each activity as a not instantaneous event, in the sense that it is composed
of a “start” and “end” event. In order to reconstruct the model, given two activities
ai and a j contained into a log, the procedure defines the dependency of ai on a j iff,
whenever ai appears in some execution in the log, a j must appear in that execution
sometime earlier and the termination time of a j is smaller than the starting time of
ai . The notion of time interval is crucial for the application of the procedure since it
analyses the overlaps of time intervals. The presented approach is quite close to the
one by Agrawal et al.

Weijters et al.

The control-flowdiscovery approach byWeijters et al. [165, 167] is called “Heuristics
Miner”. This algorithm can be considered as an extension of the one by van der Aalst
et al. (2002): in both cases the idea is to identify sets of relations from the log and then
build the final model on the basis of such observed relations. The main difference
between the approaches is the usage of statistical measures (together with acceptance
thresholds, parameters of the algorithm) for the determination of the presence of such
relations.

The algorithmcan be divided into threemain phases: the identification of the graph
of the dependencies among activities; the identification of the type of the split/join
(each of them can be an AND or a XOR split); the identification of the “long distance
dependencies”. An example of measure calculated by the algorithm is the “depen-
dency measure” that calculates the likelihood of a dependency between an activity
a and b:

a ⇒ b = |a > b| − |b > a|
|a > b| + |b > a| + 1

where |a > b| indicates the number of times that the activity a is directly followed
by b into the log. The possible values of a ⇒ b are in the range−1 and 1 (excluded);
its absolute value indicates the probability of the dependency and its sign indicates
the “direction” of the dependency (a depends on b or the other way around). Another
measure is the “AND-measure” which is used to discriminate between AND and
XOR splits:

42 5 Process Mining

a ⇒ (b ∧ c) = |b > c| + |c > b|
|a > b| + |a > c| + 1

If two dependencies are observed, e.g. a → b and a → c, it is necessary to discrim-
inate if a is and AND or a XOR split. The above-written formula is used for this
purpose: if the resulting value is above a given threshold (parameter of the algorithm),
then a is considered as an AND split, otherwise as XOR.

This is one of the most used approaches in real-case applications, since it is able
to deal with noise and is able to produce generalized relations.

Greco et al.

The process mining approach by Gianluigi Greco et al. [68, 69] aims at creating a
hierarchy of process models with different levels of abstraction.

The approach is divided into two steps: in the first one, the traces are clusteredwith
an iterative partitioning of the log. In order to perform the clustering, some features
are extracted from the log using a procedure that identifies the “frequent itemset”
of sequence of activities among all the traces. Once the clustering is completed, a
hierarchy (i.e. a tree) is built containing all the clusters: each node is supposed to be
an abstraction of its children, so that different processes are abstracted into a common
parent.

Van Dongen et al.

The approach by van Dongen et al. [175, 176] aims at generating Event-driven
Process Chains (EPC) [50]; this notation does not require a strong formal framework
because, among other things, the notation does not rigidly distinguish between output
flows and control-flows or between places and transitions, as these often appear in a
consolidated manner. An example of EPC is proposed in Fig. 5.5.

Fig. 5.5 An example of EPC. In this case, diamonds identify events; rounded rectangles represent
functions and crossed circles identify connectors.

In this approach, a model (actually, it is just a partial order, with no AND or XOR
choices) is generated for each log trace. After the set of “models” is completely
generated (so that all the traces have been observed), these are aggregated in a single
model. The aggregation is constructed according to some rules but, intuitively, can
be considered as the sum of the behaviors observed in all the “trace model”.

5.1 Process Mining as Control-Flow Discovery 43

Alves de Medeiros et al.

The approach presented by Ana Karla Alves de Medeiros and Wil van der Aalst [44,
153] uses genetic algorithms [8, 109].

In the first step, a random “population” of initial processes is created. Each indi-
vidual of this population is analyzed in order to check how much it “fits” the given
log (in this approach, the fitness criterion is fundamental). After that, the population
evolves according to genetic operators: crossover helps combining two individuals;
mutation modifies a single model.

With this approach, the algorithm iteratively improves the population, until a suit-
able candidate is found (“stop criterion”). This approach is extremely powerful and
can extract a huge number of models, but the main drawback is its huge complexity.

Günter et al.

In [72, 74] Christian Günter andWil van der Aalst present their new idea for handling
“spaghetti-processes”. These processes are characterized by an incredible level of
flexibility that reduces their “structureness”. Figure5.6 presents a mined model (and
an enlarged portion of it) based on the executions of unstructured process: there are
many possible paths, thus an approach that tries to describe the complete process is
not correct.

Usually, they propose ametaphor with roadmaps: in a map that presents the entire
country it does not make any sense to present all the streets of all the cities; instead,
a city-map should propose all those small routes. The same idea of “abstraction”
is applied to process mining, and is based on two concepts: significance (behaviors
important in order to describe the log) and correlation (two behaviors close one to the
other). With these two concepts, it is possible to produce the final model considering
these heuristics:

• highly significant behaviors need to be preserved;
• less significant, but highly correlated behavior should be aggregated;
• less significant and lowly correlated behavior should be removed from the model.

The result of their mining approach is a procedure that creates an “interactive”
dependency graph. According to the user’s requirements, it is possible to “zoom
in”, adding more details, or “zoom out”, creating clusters of activities and removing
edges.

Goedertier et al.

In [64], Goedertier et al. present the problem of process discovery from a new point
of view: using not only the “classical” observations of executed activities, but also
with sequence of activities that are not possible.

44 5 Process Mining

Fig. 5.6 Example of a mined “spaghetti model”, extracted from [74].

Essentially, all the real-world business logs contain only “positive events”: be-
havior that the system does not allow, typically, are not recorded. This aspect limits
the process discovery to a setting of unsupervised learning. For this reason, authors
decided to artificially generate negative events (behavior not allowed by the model)
following these steps:

1. process instances with the same sequence of activities are grouped together (to
improve efficiency);

2. completeness assumption: behavior that does not occur in the log should not be
learned;

3. induce negative events checking all the possible parallel variants of the given
sequence (permutation of some activities).

Once the log (with positive and negative events) is generated, the system learns the
precondition of each activity (as a classification problem, using TILDE: given an
activity in a particular time, detect if a positive or negative event takes place). The set
of precondition is then transformed into a Petri net on the basis of correspondences
between language constructs and Petri net patterns (these rules are similar to the
Alpha miner rules presented in Fig. 5.4).

5.1 Process Mining as Control-Flow Discovery 45

Maggi et al.

The approach by Maggi et al. [101] can be used to mine a declarative process model
(expresses using Declare language, see Subsect. 2.1.4).

The basic idea of the approach is to ask the user which kind of constraints to mine
(i.e., the Declare templates). Once the user has inserted all the templates, the system
builds the complete list with the actual constraints, by applying each template to
all the possible combinations of activities. All constraints are checked against the
log: if the log violates one constraint (i.e. it does not hold for at least one trace),
it is removed and not considered anymore. Once the procedure has completed the
analysis of all the constraints, a Declare model can be built (as the union of all the
holding constraints).

The described procedure provides two parameters (Percentage of Events and Per-
centage of Instances) that are useful to define, respectively, the activities to be used
to generate the candidate constraints, and to specify the number of traces that a
constraint is allowed to violate to be still considered in the final model. These two
parameters are useful to deal with noise in the data.

Other Approaches

A set of other process mining approaches is based on the Theory of Regions (in Petri
nets) [11, 171, 172]. Their idea is to construct a finite state automaton with all the
possible states observable into the log and then transform it into a Petri net using the
Theory of Regions (where “region” of states with the same input/output are collapsed
into a single transition).

Recent approaches are now focusing on the discovery of process trees (i.e., a
block-structured language) [19, 20, 95]: they are able to discovermodelswith specific
guarantees such as soundness or perfect fitness.

5.2 Other Perspectives of Process Mining

It is wrong to consider process mining as just control-flow discovery [83]: instead,
there are other perspectives that it is useful to consider. All the approaches described
in the following subsections can provide interesting insights on the process under
analysis, even if they do not consider the control-flow discovery as themain problem.

5.2.1 Organizational Perspective

An important side of processmining is the social mining [157, 158] (i.e. the organiza-
tional perspective of process mining). The social perspective of process mining con-
sists in performing Social Network Analysis (SNA) on data generated from business
processes. In particular, it is possible to distinguish between two types of approaches:

http://dx.doi.org/10.1007/978-3-319-17482-2_2

46 5 Process Mining

sociocentric and egocentric approaches. The first consists in analyzing the network
of connections as awhole, considering the complete set of interactionswithin a group
of persons. The second approach concentrates on a particular individual and analyzes
her or his set of interactions with other persons.

These relationships are established according to four metrics: (i) causality;
(ii) metrics on joint cases (instance of processes where two individuals operates);
(iii)metrics on joint activities (activities performed by the same persons); (iv)metrics
based on special event types (e.g. somebody suspends an activity and another
resumes it).

5.2.2 Conformance Checking

Another important aspect of process mining is conformance checking. This problem
is completely different from both control-flow discovery and SNA: the “input” of
conformance checking consists in a log and a process model (it can be defined “by
hand” or it can be discovered), and it aims at compare the observed behavior (i.e. the
log) with what is expected (i.e. the model) in order to discover discrepancies.

It is possible to instantiate the conformance checking in two activities: (i) business
alignment [128, 147] and (ii) auditing [62]. The aim of the first is to verify that the
process model and the log are “well aligned”. The second one tries to evaluate the
current executions of the process with respect to “boundaries” (given by managers,
laws, etc.).

Conformance checking approaches start becoming available for declarative
process models too, as described in [96].

5.2.3 Data Perspective

When considering a process model, it can be interesting to consider also the “data
perspective”. This term refers to the integration of the control-flow perspective with
other “ornamental” data.

For example, in [130, 131], authors describe a procedure that is able to decorate
the branches of a XOR-split (for example, of a Petri net) with the corresponding
“business conditions” that are required in order to follow that path. The procedure
uses data recorded into the log that are related to particular activities and, using
decision trees (Sect. 4.5), it extracts a logic proposition that holds on each branch of
the XOR-split.

5.3 Performance Evaluation of Process Mining Algorithm

Every time a new process mining algorithm is proposed, an important question
emerges: how is it possible to compare the new algorithm against the others,
already available in the literature? Is the new approach “better” with respect to the
others? Which are the performances of the new algorithm?

http://dx.doi.org/10.1007/978-3-319-17482-2_4

5.3 Performance Evaluation of Process Mining Algorithm 47

The main point is that, typically, the task of mining a log is an “offline activity”,
so the optimization of the resources required (in terms of memory and CPU power)
is not the main goal. For these mining algorithms, it is more important to achieve
“precise” and “reliable” results.

The main reason behind the creation of a new process mining algorithm is that the
current ones do not produce the expected results or, in other terms, that the data ana-
lyzed contain information that are different from the required ones. In order to com-
pare the performances of the two control-flow algorithms, the typical approach lies
in comparing the original process model (the one that, executed, generates the given
log) with the mined one. A graphical representation of such “evaluation process” is
presented in Fig. 5.7.

Fig. 5.7 Typical “evaluation
process” adopted for process
mining (control-flow discov-
ery) algorithms.

In the field of data mining, it is very common to compare new algorithms against
some published datasets so all the other researchers can obtain the results claimed by
the algorithm creator. Unfortunately, nothing similar exists for process mining: the
real “owner” of business processes (and thus of logs) are companies that, typically,
are reluctant to publicly distribute their own business process data: in this way, it is
difficult to build up a suite of publicly available business process logs for evaluation
purposes. Of course, the lack of extended process mining benchmarks is a serious
obstacle for the development of new and more effective process mining algorithms.
A way around this problem is to try to generate “realistic” business process models
together with their execution logs. A first attempt to do such a models and logs
generator is presented in [25, 26].

Chapter 6
Quality Criteria in Process Mining

When it is necessary to evaluate the result of a control-flow discovery algorithm, a
good idea is to split the evaluation into different aspects. In [129], four dimensions
are presented:

1. the fitness indicates howmuch of the observed behavior is captured by the process
model;

2. the precision points out if a process is overly general (a model that can generate
many more sequences of activities with respect to the observations in the log);

3. the generalization denotes if a model is overly precise (a model that can produce
only the sequence of activities observed in the log, with no variation allowed);

4. the structure indicates the difficulties in understanding the process (of course,
this measure depends on the language used for representing themodel and defines
the difficulties in reading it).

Table 6.1 Example of log
traces, generated from the
executions of the process
presented in Fig. 6.1(a).

Log trace Frequency

ABDEI 1207

ACDGHFI 145

ACGDHFI 56

ACHDFI 28

ACDHFI 23

These dimensions can be used for the identification of the aspects highlighted in a
model. For example, in Fig. 6.1 four processes are displayed with different levels
for the different evaluation dimensions. Suppose, as reference model, the one in
Fig. 6.1(a), and assume that a log that it can generate is presented in Table6.1. The
process in Fig. 6.1(b) is called “flower model” and allows any possible sequence of
activities: so, essentially, it does not define an order among them. For this reason,
even if it has high fitness, generalization and structure, it has very low precision. The
process Fig. 6.1(c) is just the most frequent sequence observed in the log, so it has

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_6

49

50 6 Quality Criteria in Process Mining

Fig. 6.1 Four process where different dimensions are pointed out (inspired by Fig. 2 of [129]). The
(a) model represents the original process, that generates the log of Table6.1; in this case all the
dimensions are correctly highlighted; (b) is a model with a low fitness; (c) has low precision and
(d) has low generalization and structure.

6.1 Model-to-Log Metrics 51

low fitness and generalization, but medium precision and high structure. The process
Fig. 6.1(d) is a “complete” model, where all the possible behaviours observed in the
log can be reproduce without any flexibility. This model has low generalization and
structure but high fitness and precision.

In the remaining part of this chapter some metrics are presented. In particular, it is
possible to distinguish between model-to-log metrics, which compare a model with
a log, and model-to-model metrics which compare two models.

6.1 Model-to-Log Metrics

These metrics aim at comparing log with the process model that — using process
mining techniques — has been derived.

Completeness (to quantify fitness) [70] defines which percentage of the traces in
a log can also be generated by the model.

Parsing Measure (to quantify fitness) [167] is defined as the number of correct
parsed traces divided by the number of traces in the event log.

Continuous Parsing Measure (to quantify fitness) [167] is a measure that is based
on the number of successfully parsed events instead of the number of parsed traces.

Fitness (to quantify fitness) [132] considers also the “problems” happened during
replay (e.g. missing or remaining tokens in a Petri net), so that actions that can’t be
activated are punished as the action that remains active in an improper way.

Completeness (PF Complete) (to quantify fitness) [44] very close to the Fitness,
takes into account trace frequency as weights when the log is replayed.

Soundness (to quantify precision/generalization) [70] calculates the percentage
of traces that can be generated by a model and that are in a log (so, the log should
contain all the possible traces).

Behavioral Appropriateness (to quantify precision/generalization) [132] evalu-
ates howmuch behavior is allowed by themodel but never used in the log of observed
executions.

ETC Precision (to quantify precision/generalization) [110] evaluates the precision
by counting the number of times that the model deviates from the log (by considering
the possible “escaping edges”).

52 6 Quality Criteria in Process Mining

Structural Appropriateness (to quantify structure) [132] measures if a model is
less compact than the necessary, so extra alternative duplicated tasks (or redundant
and hidden tasks) are punished.

6.2 Model-to-Model Metrics

The following metrics aim at comparing two models, one against the other.

Label Matching Similarity [49] is based on a pairwise comparison of node labels:
an optimal mapping equivalence between the nodes is calculated and the score is the
sum of all label similarity of matched pairs of nodes.

Structural Similarity [49] measures the “graph edit distance”, that is the minimum
number of graph edit operations (e.g. node deletion or insertion, node substitution,
and edge deletion or insertion) that are necessary to get from one graph to the other.

Dependency Difference Metric [7] counts the number of edge discrepancies be-
tween two dependency graph (binary tuple of nodes and edges).

Similarity measure for restricted workflows (graph edit distance) [108] another
edit distance measure, based on dependency graph of the model.

Process Similarity (High-level Change Operations) [97] this measure counts the
changes required to transform a process into another oner one, with “high level”
changes (not adding or removing edges, but “adding activity between two”, and so
on).

Behavioral Similarity (Cosine Similarity for Causal Footprints) [106] is based
on the distance between causal footprints (graph describing the possible behaviors
of a process) and, in particular, calculates the cosine of the angle between the two
footprints vectors (representations of the causal footprint graph).

Behavioral Profile Metric [93] compares two processes in terms of the correspond-
ing behavioral profiles (characteristics of a process expressed in terms of relations
between activity pairs).

Chapter 7
Event Streams

Process mining approaches have always been defined for static (i.e., finite, and not
evolving) log files. However, nowadays, with the advent of smart devices, it is more
relevant to begin dealing with so called event streams.

Part IV of the book will entirely be dedicated to process mining applied to event
streams. This chapter provides the basic notions and the state of the art of such
discipline.

7.1 Data Streams

Adata stream is defined as a “real-time, continuous, ordered sequence of items” [65].
The ordering of the data items is expressed implicitly by the arrival timestamp of
each item. Algorithms that are supposed to interact with data streams must respect
some requirements, such as:

1. it is impossible to store the complete stream;
2. backtracking over a data stream is not feasible, so algorithms are required tomake

only one pass over data;
3. it is important to quickly adapt the model to cope with unusual data values;
4. the approachmust dealwith variable system conditions, such as fluctuating stream

rates.

Due to these requirements, algorithms for data streams mining are divided into two
categories: data and task based [61]. The idea of the first ones is to use only a fragment
of the entire dataset (by reducing the data into a smaller representation). The idea of
the latter approach is to modify existing techniques (or invent new ones) to achieve
solutions efficient in terms of time and space.

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_7

53

54 7 Event Streams

7.1.1 Data-Based Mining

The main “data based” techniques are: sampling, load shedding, sketching and
aggregation. All these are based on the idea of randomly select items or stream
portions. The main drawback is that, since the dataset size is unknown, it is hard to
define the number of items to collect; moreover it is possible that some of the items
that were ignored were actually interesting and meaningful. Other approaches, like
aggregation, are slightly different: since they are based on summarization techniques,
in this case, the idea is to consider measures such as mean and variance; with these
approaches, problems arise when the data distribution contains many fluctuations.

7.1.2 Task-Based Mining

The main “task based” techniques are: approximation algorithms, sliding window
and algorithm output granularity. Approximation algorithms aim to extract an
approximate solution. It is possible to define error bounds on the procedure. This
way, one obtains an “accuracy measure”. The basic idea of sliding window is that
users are more interested in most recent data, thus the analysis is performed giving
more importance to recent data, and considering only summarization of the old ones.
The main characteristic of “algorithm output granularity” is the ability to adapt the
analysis to resource availability.

7.2 Common Stream Mining Approaches

The task of mining data stream is typically focused on specific types of algorithms [2,
61, 184]. In particular, there are techniques for: clustering; classification; frequency
counting; time series analysis and change diagnosis (concept drift detection). All
these techniques cope with very specific problems and can hardly be adapted to any
process mining problem. However, as this book shows, it is possible to reuse some
stream mining principles into process mining sub-problems, which can be solved
with the available algorithms.

7.3 Stream Mining and Process Mining

Over the last decade dozens of process mining and, in particular, control-flow dis-
covery techniques have been proposed, e.g., the Heuristics Miner [165]. However,
all these techniques work on a full event log and not on streaming data. Few works
in process mining literature touch issues related to mining event data streams.

7.3 Stream Mining and Process Mining 55

In [88, 89], the authors focus on incremental workflow mining and task mining
(i.e. the identification of the activities starting from the documents accessed by users).
The basic intuition is to mine process instances as soon as they are observed; each
new model is then merged with the previous one so to refine the global process rep-
resentation. The approach described is thought to deal with the incremental process
refinement, based on logs generated from version management systems. However,
as authors state, only the initial idea is sketched.

An approach for mining legacy systems is described in [86]. In particular, after the
introduction of monitoring statements into the legacy code, an incremental process
mining approach is presented. The idea is to apply the same heuristics of the Heuris-
tics Miner into the process instances and to add these data into an AVL tree (this kind
of trees are used to find the best holding relations). Actually, this technique operates
on “log fragments”, and not on single events, so it is not really suitable for an online
setting. Moreover, heuristics are based on frequencies, so they must be computed
with respect to a set of traces and, again, this is not suitable for the settings with
streaming event data.

An interesting contribution to the analysis of evolving processes is given in the
paper by Bose et al. [17]. The proposed approach, based on statistical hypothesis
tests, aims at detecting concept drift, i.e. the changes in event logs, and at identifying
the regions of change in a process.

Solé and Carmona, in [141], describe an incremental approach for translating
transition systems into Petri nets. This translation is performed using Region Theory.
The approach solves the problem of complexity of the translation, by splitting the log
into several parts; applying the Region Theory to each of them and then combining
all them. These regions are finally converted into Petri net.

Part II
Obstacles to Process Mining in Practice

This part introduces the problems that emerge when process mining is applied in real-world
environments.

The prime example of such obstacles are infrequent or “noisy” behaviors, which occur in real
life processes as a deviation from normal process flow. It is desirable to automatically discover
models that explicitly exclude such infrequent behaviors, to ease the understanding of the process
at hand, however not all the algorithms can effectively deal with such problem.

In general, however, it is possible to observe problems before, during and after the actual
mining phase. Each of these periods will be commented in this part.

Chapter 8
Obstacles to Applying Process Mining
in Practice

Process mining and, in particular, control-flow discovery, have made large advance-
ments in the academic realm, as we discussed in Chap.5. While it has also been
successfully used in practice, many existing techniques cannot be applied “out of the
box”. Their application is obstructed by a certain number of problems that we are
going to analyze in detail in this chapter.

In Chap.9, we look beyond these problems and sketch a vision for an integrated
process mining approach in small and medium sized enterprises. Chapter 10 and
onward (Parts III and IV) are devoted to solve the problems and realizing this vision.

8.1 Typical Deploy Scenarios

Before analysing in detail the process mining problems, let us present a framework
to attribute companies a characterization based on the concept of process awareness.
We think it is possible to analyse two different axes: the first measures the process
awareness of the company; the second measures the process awareness of the in-
formation systems used within the company. We may define a company as process
aware when there is a shared knowledge of business process management among the
people of the company, who can think and act by processes. This does not necessarily
imply that the information systems adopted consciously support processes. That’s
why, in the second axis, we measure the extent to which the information systems are
process aware.

Figure8.1 proposes four companies, at the “extreme positions”. It is worthwhile
to note that each of these companies may benefit from process mining techniques.
For example, ifCompany 1 orCompany 2 decide tomove their organizations towards
more structured and process oriented businesses, control-flow discovery approaches
are extremely valuable.Company 3, on the other side, already has amature infrastruc-
ture: in this case it might be interesting to evaluate the performances of the company
in order to find possible improvements on the business processes. Finally,Company 4
can benefit from process mining techniques in several ways: since the information
systems adopted do not “force” any process, it might be useful to compare the “ideal

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_8

59

http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_9
http://dx.doi.org/10.1007/978-3-319-17482-2_10

60 8 Obstacles to Applying Process Mining in Practice

Company 1 Company 2

Company 3Company 4

Process Unaware
Information Systems

Process Aware
Information Systems

Process Aware
Company

Process
Unaware
Company

Fig. 8.1 Possible characterization of companies according to their process awareness and to the
process awareness of the information systems they use.

processes” with the actual executions, or to evaluate the current performance in order
to improve the quality of the executed processes.

In all the scenarios just analysed, when dealing with real-world business process,
there are a number of problems that may occur. We have identified three possible
“moments of problems”:

1. before starting the mining phase, when the data have to be prepared;
2. during the actual process mining executions;
3. after the mining, during the interpretation of the results.

Each of the above-mentioned phases will be analyzed separately, in the three follow-
ing subsections.

8.2 Problems with Data Preparation

One of the first problems that must be solved is entirely technological. Specifically, it
involves the interoperability between data: the log files produced by the information
systems must be processed by process mining tools. A well-known process mining
software platform is ProM [163, 173, 179]: it is used by researchers for prototyping
new algorithms. This software can receive input in two formats: MXML [163] or the
recent OpenXES [75] (both are XML-based and easy to read and understand). The
main difference between the two formalisms lies on the “extendibility” of the log:
OpenXES allows the definition of custom extensions, useful for representing deco-
rative attributes of the log, while MXML does not. Eventually, the interoperability
problem (concerning the ProM tool) has been solved with the implementation of the
ProM Import Framework [73]. This tool supports the definition of extensions (by
adding some plugins) that convert custom log files into MXML or OpenXES.

Another possible problem that may occur is related to the data recorded by In-
formation Systems. Let’s consider a typical industrial scenario in which Information
Systems are used only to support the process executions. Most of all, these systems

8.2 Problems with Data Preparation 61

are not managing the entire process; instead, they are used only to handle some
activities. A typical example is Document Management System (DMS): with such
software it is possible to share documents, notify authors about modifications, down-
load the latest version of a document and so on. In a common scenario, DMSs are
required to be very flexible, in order to allow the possible ad hoc solutions (based on
the single case). All the actions executed by the system are recorded in some log files,
however many times DMSs are “process unaware” (or process-agnostic) and so are
their logs: for example, there is no information on which process or process instance
the current action is referring to, even if the system is “describing” a real business
process. This problem can be summarized as the problem of applying process mining
starting from logs generated by process unaware sources. Specifically, this problem
belongs to P-01 (as presented in Sect. 1.2) and will be named “case ID selection”.

The last problem is the presence of some “noise” inside the log. Actually, this
issue does not belong to this phase only, but it also spans in the next one. As presented
by Christian Günter, in his Ph.D. thesis [72], it is possible to identify several “types
of noise”. However, independently from the actual possible observations of noise in
the log, a log is said to be noisy [23] if either:

1. some recorded activities do not match with the “expected” ones, i.e. there exist
records of performed activities which are unknown or which are not expected to
be performed within the business process under analysis (for example, an activity
that is required in the real environment, but that is unknown to the designer);

2. some recorded activities donotmatchwith those actually performed, i.e. activity A
is performed, but instead of generating a record for activity A, a record for activity
B is generated; this error may be due to a bug introduced into the logging system
or to the unreliability of the transmission channel (e.g. a log written to a remote
place);

3. the order in which activities are recorded may not always coincide with the order
in which the activities are actually performed; this may be due to the introduction
of a delay in recording the beginning/conclusion of the activity (e.g. if the activity
is a manual activity and the worker delays the time to record the start/end of the
activity) or to delays introduced by the transmission channel used to communicate
the start/end of a remote activity.

As one can notice, points 2 and 3 of the previous list represent problems related to
the “preparation” of the log, i.e. problems that occur before the real mining takes
place. These problems can hardly be solved, because information required for the
solution is not available, and it cannot be extracted or reconstructed. More generally,
these problems are located into a level that is out of the scope of process mining
(in particular, this information should be already available), so it seems very hard
to correctly reconstruct the missing information. This problem will be addressed in
Chap.10.

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_10

62 8 Obstacles to Applying Process Mining in Practice

8.3 Problems During the Mining Phase

With the term “mining phase” we refer to all the activities that occur between the mo-
ment the log is ready for the mining and the final step, that involves the interpretation
of results.

Some of the problems that emerge at this time have already been mentioned: there
is the noise issue, so it may happen that sometimes the process extracted from the
mining phase is not what the process analyst is expecting (i.e. there can be activities
that were not supposed to occur, or occurring in the wrong position).

Another issue, related to this phase, is the problem of process unaware sources:
consider again the example of a DMS. In that case, it is possible that the generated
log could not be as informative as one would expect. For example, activities may be
described just with the document names handled by the specific activities, and some
details may be missing, like the case identifier. Another problem may occur when
considering the opposite scenario: there are too many details about the process that
is going to be analysed. In this case, the process mining algorithm has to choose the
correct “granularity” for generating the process model, but it has to take advantage
of all the available information. For example, in [24], any activity spans over time
intervals so, the mining algorithm can exploit this fact in order to extract a better (in
the sense of more precise) model. A similar problem occurs when data referring to
several perspectives is available: it would be desirable to embed all of them into the
same representation [29].

The last problem, related to the current phase, is the difficulty in configuring
the process mining algorithm: in order to be as general-purpose as possible, such
algorithms provide several parameters to be set. For example, the Heuristics Miner
algorithm [167] (that will be described in Sects. 5.1 and 11.1) requires thresholds that
are useful for the identification of the “noise” (only behaviors that generate values
greater than a threshold are considered as genuine). Configuring these parameters
is not straightforward, especially for a non-expert user1. The actual problem is that,
typically, the more “powerful” an algorithm is, the more parameters it requires.

All these problems are analyzed, and some possible solutions are proposed in
Chaps. 11, 12, 13 and 14.

8.4 Problems with the Interpretation of the Mining Results
and Extension of Processes

The last type of possible problems related to deploy emerges when mined process
models are obtained. In this case, there are two issues to tackle.

The first problem is related to the “evaluation” of the mined process: how can
we define a rigorous and standard procedure to evaluate the quality of the output

1Please note that with the term “non-expert user” we identify a user with no experience in process
mining, but with notions in business process modeling.

http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_11
http://dx.doi.org/10.1007/978-3-319-17482-2_11
http://dx.doi.org/10.1007/978-3-319-17482-2_12
http://dx.doi.org/10.1007/978-3-319-17482-2_13
http://dx.doi.org/10.1007/978-3-319-17482-2_14

8.4 Problems with the Interpretation of the Mining Results and Extension of Processes 63

generated by a process mining algorithm? It is possible to compute the performance
of the process mining result by comparing the mined model with the original logs,
and then observe the discrepancies between what is supposed to happen (the mined
model) and what actually takes place (the log). Another important advantage of
process mining and, in particular, of control-flow discovery, is acknowledged when
a company decides to begin a new business approach, based on Model Driven En-
gineering [87]: in this case, instead of starting from a new model, it is possible to
use the actual set of activities as they are performed in reality. In this case, it is very
important to bind activities with roles and originators, so to immediately have an
idea, as clear as possible, of the current situation.

The second issue concerns the representation of the model: the risk of creating a
graphical representation that is dense of data (e.g. activities, originators, frequencies,
dependencies, inputs, outputs, …) is that it will be hard to be understood and, under
certain conditions, useless (mainly because of its cognitive load [107]). The aim is
to find the “best” balance between the information presented in the model and the
difficulty in reading the model itself. A possible way to deal with this problem is
using an interactive approach, where different views can be “enabled” or “disabled”
according to the user needs.

These problems will be addressed in Chap. 15.

8.5 Incremental and Online Process Mining

One of the main aims of process mining is control-flow discovery, i.e., learning
process models from example traces recorded in event logs. Many different control-
flow discovery algorithms have been proposed in the past. Basically, all such algo-
rithms have been defined for batch processing, i.e., a complete event log containing
all executed activities is supposed to be available at the moment of execution of the
mining algorithm. Nowadays, however, the information systems supporting business
processes are able to produce a huge amount of events thus creating new opportuni-
ties and interesting challenges from a computational point of view. In fact, when we
deal with streaming data, it may be impossible to store all events. Moreover, even
if one is able to store all event data, it is often impossible to process them due to
the exponential nature of most algorithms. In addition to that, a business process
may evolve over time. Manyika et al. [104] report possible ways for exploiting large
amount of data to improve the company business. In their paper, stream processing is
defined as “technologies designed to process large real-time streams of event data”
and one of the example applications is process monitoring.

The challenge to deal with streaming event data is also discussed in the process
mining Manifesto2 [83]. Chapter 17 of this book addresses this problem.

2The Process Mining Manifesto is authored by the IEEE Task Force on Process Mining (http://
www.win.tue.nl/ieeetfpm/).

http://dx.doi.org/10.1007/978-3-319-17482-2_15
http://dx.doi.org/10.1007/978-3-319-17482-2_17
http://www.win.tue.nl/ieeetfpm/
http://www.win.tue.nl/ieeetfpm/

Chapter 9
Long-term View Scenario

The problems discussed in Chap.8 refer to various obstacles faced around data avail-
ability, quality, and analysis within process mining. In addition to these rather techni-
cal obstacles, process mining also has to face organizational challenges: a company
and the people involved have to be able to handle and pursue a processmining project.

In this context, the issues are to integrate and embed the various technical steps into
the “organization mechanism”. This represents a challenge that small and medium
sized enterprises often lack the resources for. In the following chapter, we discuss
the related problems and sketch a suitable architecture.

9.1 A Target Scenario

In a long-term view, a possible architecture for exploitation of process mining results
is presented in Fig. 9.1. The final aim of this illustrative architecture is to move
Small and Medium Enterprises (SME)1 towards the adoption of “process-centric
information systems”. According to the latest available statistics [58], SMEs, in the
European Union, manage most of the business and this motivates the strong impact
that process mining approaches might have in the European market.

Since this long-term view makes sense only if it is applied in real world contexts,
it is necessary to solve the problems presented in Sect. 1.2, in order to apply process
mining techniques.

Business processes are cross-functional and involve multiple actors and heteroge-
neous data. Such complexity calls for a structured and planned approach, requiring a
substantial amount of competence and human resources. Unfortunately, SMEs typi-
cally do not have sufficient resources to invest in this effort. Moreover, many times,

1According to the “Recommendation concerning the definition of micro, small and medium-sized
enterprises” [57], a SME “is made up of enterprises which employ fewer than 250 persons and
which have an annual turnover not exceeding EUR 50 million, and/or an annual balance sheet
total not exceeding EUR 43 million.”

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_9

65

http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_1

66 9 Long-term View Scenario

SMEs do not own a clear and formal description of their business processes since
such knowledge is only “mentally held” by few key staff members. It is sufficient
that one of these persons quits the company to create difficulties in the maintenance
of business processes.

A way to cope with these difficulties is to resort, as far as possible, to formal mod-
els for representing business processes within a model-driven engineering (MDE)
approach. The rigorous adoption of a MDE approach can lead to an improvement of
the productivity in the context of small andmedium-sized companies: it can facilitate
the quick adaptation of the processes to the changes of the market and to better face
variations in the demand for resources. A fundamental issue, however, is how to get
useful models, i.e., models that represent relevant and reliable behavior/information
about the business processes. There are, at least, three components of a business
process that need to be modeled:

1. artifacts (all the digital documents involved in a business process, e.g. invoices,
orders, database entries, …);

2. control-flow (ordering constraints among activities);
3. actors (who is actually going to execute the tasks).

Techniques for the automatic extraction of information from the execution of busi-
ness processes for each one of these components have already been developed: data
mining, process mining, and social mining.

9.2 Discussion

Many SMEs, in the European Union, do not take advantage of Process Aware In-
formation Systems (PAIS) and prefer to just use information systems that are not
process aware. In addition, for the support of their activities, many other software
are used, such as email, free-text documents, … Of course, most of the times, a busi-
ness process is actually driving these companies, but such knowledge is not encoded
into any specification.

In the example architecture of Fig. 9.1, the idea is to present a system that uses
many different data-sources from different departments of a company (e.g. docu-
ment management systems, mobile devices, …). As presented in the diagram, the
architecture is divided into three packages: ETL, process mining and MDE. The first
package is responsible for the Extraction, the Transformation and the Loading of the
data from different data-sources into a single “data-collector”. In particular, this data
should be extracted from the sources and then cleaned as much as possible, in order
to get a uniform and “verified” version of the data. Once a log is available, it is given
as input to the second component: the process miner. Considering an ideal approach,
the result of this phase is a global process model, where all the aspects are properly
described and a “holistic” merge is applied among all the different perspectives. The
process model extracted during the second phase can be used in two possible ways:
to perform conformance checking analysis (between the model itself and new logs,

9.2 Discussion 67

Fig. 9.1 A possible architecture for a global system that spans from the extraction phase to the
complete reengineering of the current production process model.

68 9 Long-term View Scenario

in order to monitor the performances of executions) or as input for a model driven
approach that can automatically generate software or adapt systems to be used in the
production environment.

The impact of the implementation of a similar architecture can be impressive:
it could admit a system which allows the conversion of the actual business into a
process-oriented one, with very low costs. This will increase the ability to adapt to
the requirements arising from the marketplace, in order to speed up the rate at which
SMEs respond to market needs as well as to service or product innovation.

With respect to this book, the “ETL Package” is supposed to deal with data import
and, likely, with incomplete information. This is the main topic of Chap.10.

The “Process Mining Package” of the proposed architecture encompasses all the
actual mining activities, which are discussed in Chaps. 12, 13 and 14.

Typical “Model Driven Engineering elaborations” include those described in
Chap.15, which are supposed to evaluate the mined models, comparing them with
the already available ones.

Finally, the entire architecture could be ported into an online settings, but its
internal components must be adapted to the new scenario. This issue is discussed in
Chap.17.

http://dx.doi.org/10.1007/978-3-319-17482-2_10
http://dx.doi.org/10.1007/978-3-319-17482-2_12
http://dx.doi.org/10.1007/978-3-319-17482-2_13
http://dx.doi.org/10.1007/978-3-319-17482-2_14
http://dx.doi.org/10.1007/978-3-319-17482-2_15
http://dx.doi.org/10.1007/978-3-319-17482-2_17

Part III
Process Mining as an Emerging
Technology

This part focuses on problems that arise during the entire process mining phase, as mentioned in
Chap. 8: in particular, it is possible to characterize the problems according to the “moments”
when they may occur.

The first problem is connected to the preparation of the data to be analyzed by process mining
algorithms. The data preparation problem was already introduced in Sect. 8.2. Once data are
available, it is possible to start the actual analysis. Different set of problems may arise now, as
described in Sect. 8.3. The first problem of the actual mining phase, lies in mining activities using
data with a “deep granularity”. Specifically, we will consider logs where activities are recorded as
time intervals, therefore with a starting and finishing events. The second problem we will face is
the complexity in configuring parameters of mining algorithms.We will propose a couple of
solutions, both automatic and user-guided. Then, we will analyze how to extend a process model
with additional perspectives and how to interpret the mining results. This book part continues by
tackling the post-mining problems, as mentioned in Sect. 8.4: two metrics for the evaluation of
mining results are proposed. Finally, the last chapter of this part proposes a simple approach to
get some data, useful to immediately start testing the capabilities of process mining techniques.

http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_8

Chapter 10
Data Preparation

The idea underpinning process mining techniques is that most business processes
that are executed with the support of an information system, leave traces of their
activity executions and this information, which is stored in the so-called “log files”.
The aim of process mining is indeed to discover, starting from these logs, as much
information as possible. In particular, control-flow discovery aspire to synthesizing
a business process model out of data.

In order to perform such reconstructions, it is necessary that the log contains a
minimum set of information. With respect to the problems mentioned in Sect. 1.2,
this chapter deals with P-01, which is also discussed in Sect. 8.2.

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_10

71

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8

72 10 Data Preparation

In particular, all the events, recorded into the log, must provide:

• the name of the activity performed;
• the process case identifier (i.e. a field with the same value for all the executions of
the same process instance);

• the execution time of the activity.

This set of information can be considered as the minimum required one. However,
beside those, there can be information on:

• the name of the process the activity belongs to;
• the activity originator (if available).

In this context, we consider the name of the process optional because, if it is not
provided, it is possible to assume the same process for all the events. The same
assumption holds for the activity originator.

Typically, these logs are collected in MXML or, recently, in XES files, so that
they can be analyzed using the tool ProM. When process mining techniques are
introduced in new environments, the data can be sufficient for the mining or can lack
some fundamental information, as considered in this chapter.

We will assume to have a process unaware Information System, and let’s assume
we have to analyze log data generated from executions of such system. In this context,
it is necessary to distinguish two similar concepts that are used in different ways:
process instance and case ID. The first term indicates the logical flow of the activities
for one particular instance of the process. The “case ID” is the way the process
instance is implemented: typically, the case ID is a set of one or more fields of the
dataset, whose values identify a single execution of the process. It is important to
note that there can be many possible case IDs although, of course, not all of them
may be used to recognize the actual process.

This chapter presents a general framework [30] for the selection of the “most
interesting” case IDs, and where the final decision will be delegated to an expert
user. In particular, we first preset a formal framework for describing log files and our
problem formalization. Then a possible solution is reported and, finally, the chapter
ends with some experimental results and the description of similar problems.

10.1 Process Mining in New Scenarios

Consider, for example, Document Management Systems (DMS): they are widely
used in large companies, public administrations, municipalities, etc. Clearly, docu-
ments can be referred to processes and protocols (consider, for example, the doc-
uments involved in supporting the process of selling a product) but they may not
contain an explicit reference to it. In the following sections we present our idea,
which consists of exploiting the information produced by such support systems, not
limiting to DMSs, in order to mine the processes in which the system itself is in-
volved. The nodal point is that these systems typically do not log explicitly the case
ID. Therefore, it is necessary to infer this information that enables to relate the system
entities (e.g. documents in a DMS) to the process instances.

10.1 Process Mining in New Scenarios 73

Fig. 10.1 Example of a process model. In this case, activities C and D can be executed in parallel,
i.e. in no specific order.

One of the fundamental principles that underpins the idea of “processmodeling” is
that a defined process can generate any number of concurrent instances (i.e., instances
“running” at the same time). Consider, as an example, the process model defined in
Fig. 10.1: it is composed of five activities. The process always starts executing A;
then B; C and D can be performed in any order and, finally, E is executed. We can
observe more than one instance running at the same time: so, for example, at time t
we can observe any number of activities executed. Figure10.2 tries to represent three
instances of the same process: the first (ci) is almost complete; the second (ci+1) is
just started and the last one (ci+2) has just completed the first two activities.

In order to identify different instances, it is easy to figure out the need of an element
that connects all the observations belonging to the same instance. This element is
called “case identifier” (or “case ID”). Figure10.2 represents it with different colors
and with the three labels ci , ci+1 and ci+2.

Fig. 10.2 Two representations (one graphical and one tabular) of three instances of the same process
(the one of Fig. 10.1).

10.2 Working Framework for Event Logs

The process mining framework we address is based on a set L of log entries orig-
inated by auditing activities on a given system. Each log entry l ∈ L is a tuple of
the form: (

activity,timestamp,user,info1,. . . ,infom

)

74 10 Data Preparation

Table 10.1 An example of
log L extracted from a docu-
ment management system: all
the basic information (such
as the activity name, the
timestamps and the originator)
is shown, together with a set of
information on the documents
(info1 . . . infom). The activity
names are: a1 =“Invoice”;
a2 =“Waybill”; a3 =“Cash
order”; a4 =“Carrier receipt”.

Act. Timestamp User info1 info2 … infom

a1 2015-01-02 12:35 Alice A 2014-06-02 …

a2 2015-01-02 12:36 Alice A B …

a3 2015-01-03 17:41 Bob A 2014-06-03 …

a4 2015-01-04 09:12 Charlie A B …

a1 2015-01-05 08:45 Eve B 2014-05-12 …

a2 2015-01-06 07:21 Alice B A …

a3 2015-01-06 11:54 Bob C 2014-02-20 …

a4 2015-01-06 15:15 Charlie B A …

a1 2015-01-08 09:55 Bob D 2014-03-30 …

a2 2015-01-08 10:11 Bob D C …

a3 2015-01-09 16:01 Bob C 2014-06-08 …

a4 2015-01-09 18:45 Charlie D D …

In this form, it is possible to identify:

• activity the name of the registered activity;
• timestamp the temporal instant in which the activity is registered;
• user (or originator) the agent that executed the registered activity;
• info1,. . . ,infom possibly empty additional attributes. The semantics of these ad-
ditional attributes depend on the activity of the respective log entry. Specifically,
given an attribute infok and activities a1, a2, infok , the possible values may repre-
sent different information for a1 and a2; moreover, the semantics is not explicit.
We call these data “decorative” or “additional” since they are not exploited by
standard process mining algorithms. Observe that two log entries, referring to the
same activity, are not required to share the values of their additional attributes.

Table10.1 shows an example of such a log in a document management environ-
ment. Please note the semantic dependency of attribute info2 on activities: in case of
“Invoice” it may represent a date, in case of “Waybill” it may represent the account
owner name.

The difference between such log entries and an event in the standard process
mining approach is the lack of process instance information. More in general, it can
be observed that the source systems we consider do not implement explicitly some
workflow concepts, since L might not come from the sampling of a formalized
business process at all.

From now on, we assume a relational algebra point of view over the framework: a
logL is a relation (set of tuples)whose attributes are (activity, timestamp, originator,
info1, …, infom).

As usual, we define the projection operator πa1,...,an on a relation R as the restric-
tion of R to attributes a1, . . . , an (observe that duplicates are removed by projection,
otherwise the output would not be a set).

For the sake of brevity, given a set of attributes A = {a1, . . . , an}, we denote a
projection on all the attributes in A as πA(R). Similarly, given an attribute a, a value
constant v and a binary operation θ , we define the selection operator σaθv(R) as

10.2 Working Framework for Event Logs 75

the selection of tuples of R for which θ holds between a and v; for example, given
a = activity, v = “Invoice”, and θ being the identity function, σaθv(L) is the set of
elements ofL having “Invoice” as value for attribute activity. For a complete survey
about relational algebra concepts refer to [53].

It is worthwhile to notice that relational algebra does not deal with tuples ordering,
which is on the other hand a crucial issue in process mining. However, this is not an
impassable problem since (i) the log can be sorted whenever required and (ii) we are
now concentrating on the generation of a log suitable for applying process mining
techniques (and not a process mining algorithm itself).

From now on, identifiers a1, . . . , an will range over activities. Moreover, given a
logL , we define the set A (L) = πactivity(L) (distinct activities occurring in L).
Finally, we denote with I the set of attributes {info1, . . . , infom}.

As stated above, our efforts are concentrated on extracting flow of information
fromL , that is, guessing the case ID for each entry l ∈ L , according to the following
restrictions on the framework.

Fixed a log L , we assume that:

1. given a log entry l ∈ L , if a case ID exists in l, then it is a combination of
values in the set of attributes P I ⊆ I (i.e. activity, timestamp, originator do not
participate in the process instance definition);

2. given two log entries l1, l2 ∈ L such that πactivity(l1) = πactivity(l2), if P I
contains the case ID for l1, then it also contains the case ID for l2 (i.e., process
instance attributes set is fixed per activity); this is implied by the assumption that
the semantics of additional fields is a function of the activity, as stated above.

10.3 Identification of Process Instances

From the basis we just defined, one can deduce that the process instance has to be
guessed as a subset of I ; however, since the semantics is not explicitly given, it
cannot be exploited to establish correlation between activities, hence the process
instance selection must be carried out looking at the entries πi (L), for each i ∈ I .

Nonetheless, since the semantics of I is a function of the activity, the selection
should be performed for each activity in A (L), for each attribute in I , result-
ing in a computationally expensive procedure. In order to reduce the search space,
some intuitive heuristics are depicted: their application resulted successful in our
experimental environment.

10.3.1 Exploiting A-priori Knowledge

Experts of the source domain typically hold some knowledge about the data that can
be exploited to discard the less promising attributes.

76 10 Data Preparation

Let a be an activity, and C (a) ⊆ I the set of attributes candidate to participate
in the process instance definition, with respect to the given activity. Clearly, if no
a-priori knowledge can be exploited to discard some attributes, then C (a) = I .

The experiments we carried out helped us define some simple heuristics for re-
ducing the cardinality of C (a), basing on:

• assumptions on the data type (e.g. discarding timestamps);
• assumptions on the case ID expected format, like average length upper and lower
bounds, length variance, presence or absence of given symbols, etc.

It is worthwhile to notice that this procedure may lead to discard all the attributes
infoi for some activities in A (L). In the following formula we denote with A (C)

the set of all the activities that overcome this step, that is

A (C) =
⋃

a∈A (L)

{a | C (a) �= ∅} .

A (C) contains all the activities which have some candidate attribute, that is, all the
activities that can participate in the process we are looking for.

10.3.2 Selection of the Identifier

After the search space has been reduced and the set C (a) has been computed for
each activity a ∈ A (L), we must select those elements of C (a) that participate in
the process instance. The only information we can exploit in order to automatically
perform this selection is the amount of data shared by different attributes.

Aiming at modeling real settings, we fix a sharing threshold T , and we retain
as candidate those subsets of C (a) that share at least T entries with some attribute
sets of other activities. This threshold must be defined with respect to the number of
distinct entries of the involved activities, for instance as a fraction of the number of
entries of the less frequent one.

Let (a1, a2) be a pair of activities, such that a1 �= a2 and let P Ia1 and P Ia2 the
corresponding process instances field. We define the function S that calculates the
shared values among them:

S(a1, a2, P Ia1 , P Ia2) =
∣∣∣πP Ia1

(σactivi t y=a1(L))
⋂

πP Ia2
(σactivi t y=a2(L))

∣∣∣

Observe that, in order to perform the intersection, it must hold |P Ia1 | = |P Ia2 |.
Using such function, we define the process instance candidates for (a1, a2) as:

ϕ(a1, a2) = {
(P Ia1 ∈ P(C (a1)), P Ia2 ∈ P(C (a2))) | S(a1, a2, P Ia1 , P Ia2) > T

}

where P denotes the power set.

10.3 Identification of Process Instances 77

Elements of ϕ(a1, a2) are pairs, whose components are those attribute sets, re-
spectively of a1, a2, that share a number of values greater than T (i.e. the cardinality
of the intersection of P Ia1 and P Ia2 is greater than T). In the following, we denote
with ϕa the set of all the candidate attribute sets for activity a, i.e.:

ϕa = {
P I | ∃a1 ∈ A (C), P Ia1 ∈ P(C (a1)).(P I, P Ia1) ∈ ϕ(a, a1)

}
.

This formula figures out some candidate process instances that may relate two
activities: it is worthwhile to note, however, that our target is the correlation of a set
of activities whose cardinality is in general greater than 2. Actually, we want to build
a sequence S = aS1 , . . . , aSn of distinct activities. Nonetheless, given activity aSi ,
there may be a number of choices for aSi+1 , and then a number of process instances
in ϕ(aSi , aSi+1). Hence, a number of sequences may be built.

We call chain a finite sequence C of n components of the form [a, X], being a an
activity and X ∈ ϕa . We can denote it as follows:

C = [
a1, P Ia1

]
,
[
a2, P Ia2

]
, . . . ,

[
an, P Ian

]

such that
(
P Iai , P Iai+1

) ∈ ϕ(ai , ai+1), with i ∈ [1, n − 1]. We denote with Ca
i the

i-th activity of the chain C , and with C P I
i its i-th P I .

Observe that a given activity must appear only once in a chain, since a process
instance is defined by a single attribute set. Given a chain C ending with element
[a j , P Ia j], we say that C is extensible if there exists an activity ak ∈ A (C) such
that (P Ia j , X) ∈ ϕ(a j , ak), for some set X ∈ P(C ak)). Otherwise, C is said to be
complete. Moreover, we say that an activity a occurs in a chain C , denoted a ∈ C , if
there exists a chain component [a, X] in C for some attribute set X . Since an activity
can occur in more than one chain with different process instances, in some case we
write P Iai ,C to denote the process instance of activity ai in chain C . Finally, let
A (C) denote the set of activities occurring in a chain C . The empty chain is denoted
with ⊥.

Given a chain C , we define the average value sharing S(C) among selected at-
tributes of C as:

S(C) =
∑

1≤i<n S
(
Ca

i , Ca
i+1, C P I

i , C P I
i+1

)

n − 1

where n denotes the chain length.
All the possible complete chains onL are built according to Algorithms1 and 2.
Algorithm1 calls Algorithm2 for all the extensible chains of length 1. Observe

that the pseudo code of Algorithms1 and 2 builds also some chains which are per-
mutations of one another.

10.3.2.1 Match Heuristics

In computing the amount of data shared by two activities via function ϕ, heuristics
approaches may help in modeling the complexity of a real domain. Actually, the

78 10 Data Preparation

Algorithm 1. Build Chains
1 foreach a ∈ A (C) do
2 foreach P I ∈ ϕa do
3 Extend Chain([a, P I]) /* see Algorithm 2 */
4 end
5 end

Algorithm 2. Extend Chain
Input: a chain C = [a1, P I1], . . . , [ai−1, P Ii−1]

1 foreach ai ∈ A (C) | ai /∈ C do
2 foreach P Ii ∈ ϕai | (P Ii−1, P Ii) ∈ ϕ(ai−1, ai) do
3 C = C, [ai , P Ii]
4 return Extend Chain(C) /* recursive call */
5 end
6 end

comparison performed between values does not need to be an identitymatch; instead,
a fuzzy match can be implemented. Guided by this basic heuristics, we can substitute
the intersection operator in ϕ with an approximation of it, whose definition may be
domain specific or not. Simple examples we tested in our experimental environment
are:

• equality match up to X leading characters,
• equality match up to Y trailing characters,

and their combinations. In general it is possible to use a measure for string distance.

10.3.3 Results Organization and Filtering

In the previous sections we have shown how to compute a number of chains (i.e., a
number of logs); in general, a domain expert is able to discriminate between “good
chains” and less reasonable ones, but this could be a demanding task. Here we
present the problem of comparing different chains: in order to address this issue, it
is worthwhile to analyze a methodology that helps restricting the number of possible
chains.

Generally, we reject a chain in favor of another one if and only if the latter
contains all the activities of the former, and it is either simpler or it supports a higher
confidence. Example of parameters taken into account might be:

• the number of attributes in the process instance of a chain component (recall that
each component has the same number of process instance attributes): a chain that
concerns less attributes may be considered simpler, thus preferable since more
readable for a human analyst;

10.3 Identification of Process Instances 79

• the cardinality of the shared value between chain components (S(·)): a chainwhose
share factor is higher, gives higher confidence. This parameter could be tuned by
a threshold.

Let H be the set of complete chains computed by Algorithms1 and 2, without
permutations. Given two chains C1 and C2:

C1 = [
a1, P Ia1

]
, . . . ,

[
an, P Ian

]

C2 = [
b1, P Ib1

]
, . . . ,

[
bm, P Ibm

]

in the set H , we define an ordering operator 	 as:

A 	 B ⇔

⎧
⎪⎨

⎪⎩

∣∣AP I
1

∣∣ ≥ ∣∣B P I
1

∣∣ if A (A) = A (B) ∧ S(A) = S(B)

S(A) ≤ S(B) if A (A) = A (B) ∧ S(A) �= S(B)

A (A) ⊆ A (B) otherwise

The operator 	 defines a reflexive, antisymmetric, and transitive relation over
chains, hence (H ,) is a partially ordered set [137]. For the sake of simplicity,
in the above formulation we do not use any threshold to tune the value sharing
comparison.

The ordering we defined, strives to equip the framework with a notion of “best
chains”, i.e., those chains which could be suggested to a domain expert.

10.3.4 Deriving a Log to Mine

For each chain C with positive length, we can build a logL ′ whose tuples have the
form:

(activity,timestamp,user,case ID,processID)

Please observe that the process instancewe selected is a set of attributes, whereas a
single one is expected by standard process mining techniques. Hence, a composition
function k from a set of values to a single one is needed (a straightforward example
of k is string concatenation). The log L ′ is obtained, starting from L s with the
execution of Algorithm3.

Observe that the order on the chain components does not influence the process
instance selection. For this reason, in order to build the logL ′, once all the chains are
complete (nomore extensible), it is possible to ignore the chains that are permutations
of a given one. Thus, some chains computed by Algorithm1 can be discarded.

It is interesting to observe, however, that maximal elements in the poset represent
different processes. A conservative approach compels us considering each maximal
chain as defining a distinct process. The following example illustrates the reason
why we chose this approach. Given two maximal chains C1 and C2:

80 10 Data Preparation

Algorithm 3. Conversion of L toL ′
Input: H : set of chains; k: case ID composition function

1 L ′ ← ∅
2 chainNo ← 0
3 foreach C ∈ H do
4 LC ← σactivity∈A (C)(L)

5 foreach l ∈ LC do
6 activity ← πactivity(l)
7 timestamp ← πtimestamp(l)
8 originator ← πoriginator(l)
9 caseid ← k

(
πP Iactivity,C (l)

)

10 processid ← chainNo
11 L ′ ← L ′ ∪ {(activity, timestamp, originator, caseid, processid)}
12 end
13 chainNo ← chainNo + 1
14 end
15 return L ′

C1 = . . . ,
[
ai−1, P Iai−1

]
,
[
ai , P Iai

]
,
[
ai+1, P Iai+1

]
, . . .

C2 = . . . ,
[
b j−1, P Ib j−1

]
,
[
b j , P Ib j

]
,
[
b j+1, P Ib j+1

]
, . . .

where P Iai−1 �= P Ib j−1 ; P Iai �= P Ib j ; P Iai+1 �= P Ib j+1 and ai = b j . In other
words, C1 and C2 contain the same activity ai but with different process instances.
Considering C1 and C2 as belonging to the same process is not desirable, since
this can lead to inconsistent control-flow reconstruction. Hence, each maximal chain
defines a process and the domain expert is in charge of recognizing if different chains
belong to the same real process. During the conversion ofL to the process logL ′,
we assign as process ID a chain counter.

10.4 Experimental Results

As explained, the problem of case ID identification is common to many businesses.
In particular, we tested our procedure in data coming from the company Siav S.p.A.1.
In this case, the existing implementation is limited to process instances constituted
by a single attribute (e.g., |P Ii | = 1), due both to a-priori knowledge about the
domain and computational requirements. In particular, all the pre-processing steps
that reduce the search space have been implemented as Oracle store procedures,
written in PL/SQL. Then the chain building algorithms are implemented in C#.
Moreover, for improving performances, we do not compute the heuristics on the
whole log, but on a fraction of random entries.

1“Siav is a software development and IT services company specialized in electronic documents
management. It is an industry specialist in Italy with over 250 people employed and around 3000
installations”. From http://www.siav.com/.

http://www.siav.com/

10.4 Experimental Results 81

Table 10.2 Results summary.
Horizontal lines separate dif-
ferent log sources (datasets).
The table also shows the total
number of chains, themaximal
chains and the chains pointed
out by the expert.

∣∣L ′∣∣ ∣∣A
(
L ′)∣∣ |I | Time |H | Max. ch. Exp. ch.

10000 13 26 6s 3 2 1

20000 39 26 20s 5 2 1

40000 47 26 1m 40s 8 3 2

60000 2 18 2s 2 1 0

140000 4 18 15s 3 1 1

20000 12 16 40s 3 3 1

30000 16 16 2m 11 3 1

We tried our implementation on logs coming from a document management sys-
tem; the source log is reduced to the form described in Sect. 10.2 after undergoing
some preprocessing steps.

We applied the algorithms to real logs, obtaining concrete results, validated by
domain experts. Table10.2 summarizes the main information: please note that the
expert chains are always within the set of maximal chains (computed by the algo-
rithm), since they selected among the firsts. Figure10.3 shows how chains evolve
when the log cardinality scales up: in particular, notice that the number of chains
tends to increase, while the poset structure tears down the number of chains we pre-
sented to the domain experts. Figure10.4 plots the processing time: it is a function of
the log cardinality, of the number of activities in the log (i.e. the number of possible
chain components), and of the number of decorative attributes (i.e. the number of
possible ways of chaining two components).

The knowledge of the application domain gave us the opportunity to implement
some heuristics, as explained in Subsect. 10.3.1. The following criteria were selected
in order to reduce the search space:

• a candidate attribute must have a string type (i.e., we discard timestamps and
numeric types, that in our case mostly represent prices);

• the values of a candidate attribute must fulfill these requirements:

– maximum average length: 20 characters,
– minimum average length: 3 characters,
– maximum variation with respect to the average length: 10.

Finally, we relaxed the intersection operator in ϕ requiring values identity up to the
first leading character and up to 2 trailing characters.

The experiments were carried out on an Intel Core2 Quad at 2,4GHz, equipped
with 4GB of RAM. The DBMSwhere the logs were stored was local to the machine,
thus no network overhead has to be considered.

10.5 Similar Problems and Solutions

The problem of relating a set of activities to the same process instance is already
known in literature. In [59], Ferreira and Gillblad presented an approach for the
identification of the case ID based on the Expectation-Maximization (EM) technique.

82 10 Data Preparation

Fig. 10.3 This figure plots the total number of chains identified, the number of maximal chains
and the number of chains the expert will select, given the size of the preprocessed log.

Fig. 10.4 This figure represents the time (expressed in seconds) required to extraction chains, given
the size of the preprocessed log.

The most positive characteristic of this approach lies in its generality, which allows
its execution in all possible scenarios. However, it suffers of two drawbacks: its
computational complexity; and problems deriving from reaching the local optimum
of the likelihood function.

Other approaches, such as the one presented by Ingvaldsen et al., in [55] and in
[56], use the input and output produced by the activities registered in the SAP ERP.
In particular, they construct “process chains” (composed by activities belonging to
the same instance) by identifying the events that produce and consume the same
set of resources. The assumption underpinning this approach (i.e., the presence of
resources produced and consumed by two “joint” activities) seems too strong for a
broad and general application.

Otherworks that dealwith the same issue are presented in [60, 180], but all of them
solve only partially the problem, or impose specific constraints on the environment,
clearly limiting the applicability in general scenarios. In [116], authors present a
detailed review of the literature on this field and describe a novel approach that

10.5 Similar Problems and Solutions 83

allows the collection of data to be mined. The technique described in this work,
however, requires the modification of the source code of the application, but this
is not always feasible. An empirical study on an industrial application is provided
as well.

The most important difference between our approach and others in literature is
that, in our case, the information on the process instance is “hidden inside the log”
(we do now knowwhich are the fields with the required information), and therefore it
has to be extracted properly. Such a difference is very important for two fundamental
reasons:

1. the settings we required are sufficiently general to be observed in a number of
real environments;

2. our technique is devised for this particular problem, hence can be more efficient
than others.

10.6 Summary

This chapter presents an approach for the identification of process instances on logs
generated from systems that are not process-aware.

Process instance information is guessed using additional meta-data, typically
available when dealing with software systems, with respect to a standard process
mining framework.

The described procedure is entirely based on the information that decorates doc-
uments (this work is a generalization of a real business case related to a document
management system, where discovering the process instance means correlating dif-
ferent document set), and relies on a relational algebra approach. Moreover, we
deem that our generalization can be fairly adoptable in a number of domains, with a
reasonable effort.

With respect to the problems pointed out in Sect. 1.2, this chapter deals withP-01:
problems occurring before the actualmining,with the data preparation (see Sect. 8.2).
In general, the provided approach solves the problems, but requires the interaction
of a domain expert.

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8

Chapter 11
Heuristics Miner for Time Interval

Many control-flow discovery algorithms proposed up to now, assume that each
activity is considered instantaneous. This is due to the fact that usually a single
log for each performed activity is recorded, regardless of the duration of the activity.
In many practical cases, however, activities involve a span of time, so they can be
described by time intervals (couples of time points). Of course, not recording the
duration of activities makes mining quite hard. Since in some cases information
about duration of some activities is available, it is wise to use such information.

For the above-given reasons, the generalization proposed in this section allows
the treatment of time intervals. Exploiting this information, a “better” (i.e. closer to
the model that originated the logs) process model can be mined, without modifying

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_11

85

86 11 Heuristics Miner for Time Interval

the overall complexity of the original algorithmand, in addition, preserving backward
compatibility.

This chapter presents the generalization of a popular process mining algorithm,
named Heuristics Miner, to time intervals. In particular, it will be shown that the
possibility to use time interval information, when available, allows the algorithm to
produce better workflow models.

With respect to the problems mentioned in Sect. 1.2, this chapter deals with P-02,
which is also discussed in Sect. 8.3.

11.1 Heuristics Miner

HeuristicsMiner, already briefly presented in Sect. 5.1, is a process mining algorithm
that uses a statistical approach to mine the dependency relations among activities
represented by logs.

The relation a >W b holds iff there is a trace σ = 〈t1, t2, . . . , tn〉 and i ∈
{1, . . . , n − 1} such that σ ∈ W and ti = a and ti+1 = b. The notation |a >W b|
indicates the number of times that, in W , a >W b holds (no. of times activity b
directly follows activity a).

The next subsections presents a detailed list of all the formulae required byHeuris-
tics Miner.

Dependency Relations (⇒)

An edge (that usually represents a dependency relation) between two activities is
added if its dependency measure is above the value of the dependency threshold.
This relation is calculated, between activities a and b, as:

a ⇒W b = |a >W b| − |b >W a|
|a >W b| + |b >W a| + 1

(11.1)

The rationale of this rule is that two activities are in a dependency relation if most
of the times they are in the specifically required order.

AND/XOR Relations (∧, ⊗)

When an activity has more than one outgoing edge, the algorithm has to decide
whether the outgoing edges are in AND or XOR relation (i.e. the “type of split”).
Specifically, it has to calculate the following quantity:

a ⇒W (b ∧ c) = |b >W c| + |c >W b|
|a >W b| + |a >W c| + 1

(11.2)

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_5

11.1 Heuristics Miner 87

If this quantity is above a given AND threshold, the split is an AND-split, otherwise
it is considered to be in XOR relation. The rationale, in this case, is that two activities
are in an AND relation if most of the times they are observed in no specific order (so
one before the other and vice versa).

Long Distance Relations (⇒l)

Two activities a and b are in a “long distance relation” if there is a dependency
between them, but they are not in direct succession. This relation is expressed by the
formula:

a ⇒l
W b = |a ≫W b|

|b| + 1
(11.3)

where |a ≫W b| indicates the number of times that a is directly or indirectly
followed by b in the log W (i.e. if there are other different activities between a and
b). If this formula value is above a long distance threshold, then a long distance
relation is added into the model.

Loops of Length One and Two

A loop of length one (i.e. a self loop on the same activity) is introduced if the quantity:

a ⇒W a = |a >W a|
|a >W a| + 1

(11.4)

is above a length-one loop threshold. A loop of length two is considered differently:
it is introduced if the quantity:

a ⇒2
W b = |a >2

W b| + |b >2
W a|

|a >2
W b| + |b >2

W a| + 1
(11.5)

is above a length-two loop threshold. In this case, the a >2
W b relation is observed

when a is directly followed by b and then there is a again (i.e. there exists a trace
σ = 〈t1, t2, . . . , tn〉 and i ∈ {1, . . . , n −2} such that σ ∈ W and ti = a and ti+1 = b
and ti+2 = a).

Running Example

Let’s consider the process model and the log of Fig. 11.1. Given the set of activi-
ties {A, B1, B2, C, D}, a possible log W , with 10 process instances, is presented in
Fig. 11.1(a) (please note that the notation 〈· · · 〉n indicates n repetitions of the same
sequence). Such log can be generated starting from executions of the process model
of Fig. 11.1(b).

88 11 Heuristics Miner for Time Interval

Fig. 11.1 Example of a process model and a log that can be generated by the process.

In the case reported in figure, the main measure (dependency relation) builds the
following relation:

⎛

⎜⎜⎜⎜⎝

A B1 B2 C D

A 0 0.83 0.83 0 0
B1 −0.83 0 0 0.83 0
B2 −0.83 0 0 0.83 0
C 0 −0.83 −0.83 0 0.909
D 0 0 0 −0.909 0

⎞

⎟⎟⎟⎟⎠

Starting from this relation and considering – for example – a value 0.8 for the de-
pendency threshold, it is possible to identify the split from activity A to B1 and B2.
In order to identify the type of the split, it is necessary to use the AND measure
(Eq.11.2):

A ⇒W (B1 ∧ B2) = 5 + 5

5 + 5 + 1
= 0.909

So, considering – for example – an AND-threshold of 0.9, the type of the split is set
to AND.

Common implementations of Heuristics Miner consider, as default value for de-
pendency threshold, 0.9, instead for the AND-threshold the default value is set to 0.1.

11.2 Activities as Time Interval

Heuristics Miner considers each activity as an instantaneous event, either if each ac-
tivity lasts for a certain amount of time. In the example shown in Fig. 11.2, regardless
of whether the starting or the finishing time is used, the algorithm will mine always
a “linear sequence of dependencies” between all activities (so D depends on C , C

11.2 Activities as Time Interval 89

Fig. 11.2 Example of model composed by activities with completely different behaviours if mined
as time intervals or instantaneous events.

on B and B on A). However, as we can see, there is actually no causal dependency
between activities B and C , since they are partially overlapped in time.

In order to extend the algorithm to cope with time intervals, it is necessary to
provide a newdefinition for the direct succession relation in the time intervals context.
With an activity represented as a single event, we have that X >W Y iff ∃ σ =
〈t1 . . . , tn〉 and i ∈ {1, . . . , n − 1} such that σ ∈ W , ti = X and ti+1 = Y . This
definition has to be modified to cope with activities represented by time intervals.

First of all, given an event e, let’s define with πactivity(e) the activity name the
event belongs to, and with πtype(e) the type of the event (either start or end).

The new succession relationship X>W Y between two activities is defined as
follow:

Definition 11.1 (Direct succession relation, >). Let a and b be two interval activ-
ities (not instantaneous) in a log W , then

90 11 Heuristics Miner for Time Interval

a>W b iff ∃ σ = 〈t1, . . . , tn〉 and i ∈ {2, . . . , n − 2}, j ∈ {3, . . . , n − 1}
such that σ ∈ W , ti = aend and t j = bstart and

∀k such that i < k < j we have that πtype(tk) 	= start.

Fig. 11.3 Visual representation of the two new definitions introduced by Heuristics Miner++.

Less formally,we can say that two activities, to be in a direct succession relation,must
meet the condition for which the termination of the first occurs before the start of the
second: between these two, no other activity is supposed to start. A representation
of this relation is reported in Fig. 11.3(a).

There is also a new concept to be introduced: the parallelism between two activ-
ities. With the instantaneous activities we have a and b considered as parallel when
they are observed in no specific order (sometimes a before b and other times b before
a), so (a >W b) ∧ (b >W a). Actually, this definition may seem odd, but without
the notion of “duration”, there is no straightforward definition of parallelism.

In the new context, considering not-instantaneous events, the definition of paral-
lelism is easier and more intuitive:

Definition 11.2 (Parallelism relation, ‖). Let a and b be two interval activities (not
instantaneous) in a log W , then

a‖W b iff ∃ σ = 〈t1, . . . , tn〉 and i, j, u, v ∈ {1, . . . , n}
with ti = astart, t j = aend and tu = bstart, tv = bend

such that u < i < v ∨ i < u < j.

More intuitively, this definition indicates two activities as parallel if they are over-
lapped or if one contains the other, as represented in Fig. 11.3(b).

Referring to the notion of “intervals algebra” introduced by Allen [6] and the
macro-algebra A3 = {≺,∩,�}, as Golumbic and Shamir described in [67], we
can think the direct succession relation as the “preceedings” (a ≺ b) one and the
parallelism relation as the “intersection” (a ∩ b) one.

We not only modified the notions of relations between two activities, we also
improved the algorithm performance modifying the formulae for the statistical de-
pendency and to determine the relation type (AND or XOR).

11.2 Activities as Time Interval 91

The new formulation of the dependency measure is:

a ⇒W b = |a>W b| − |b>W a|
|a>W b| + |b>W a| + 2|a‖W b| + 1

(11.6)

the new formulation of the AND relation is:

a ⇒W (b ∧ c) = |b>W c| + |c>W b| + 2|a‖W b|
|a>W b| + |a>W c| + 1

(11.7)

In this case, the notation |X‖W Y | refers to the number of times that, in W , activity
X and Y are in parallel relation.

In Eq.11.6, in addition to the usage of the new direct succession relation, we
introduced the parallel relation in order to reduce the likelihood to see, in the mined
model, the activities in succession relation if in the log they were overlapped.

In the second formula, Eq. 11.7, we inserted the parallelism counter in order to
prefer the selection of an AND relation if the two activities are overlapped in the log.
In both cases, because of the symmetry of the ‖ relation, a factor 2 is introduced for
parallel relations.

With the new formulae, we obtain “backward compatibility” with the original
Heuristics Miner algorithm: if the log does not contain information about interval1

the behavior is exactly the same of the “standard” Heuristics Miner. This happens
because any two activities a and b will never be in parallel relation, i.e. |a‖W b| = 0.
We can use this feature to tackle logs with a mixture of activities expressed as
time intervals and instantaneous, improving the performances without losing the
Heuristics Miner benefits. The new algorithm is called Heuristics Miner++ [24].

11.3 Experimental Results

To assess the efficacy of our new algorithm we performed some tests, on a single,
artificial, process; on a series of different processes and logs; and on a real dataset.

First Test: Single Process

The given algorithm has been implemented in the ProM 5.2 process mining frame-
work. In the first test, we tried to generate a random process with six activities. Each
of them is composed of a start and a complete event. The generated log contains
1000 cases and so, in total, 12000 events are recorded. Moreover, 10% of the traces
contain some noise that, in this case, consists of a random swap of two events of the
trace. Results of the mining are presented in Fig. 11.4. Figure11.4(a) proposes the
Petri net extracted out of the log using the “classical version” of Heuristics Miner;
Fig. 11.4(b) presets the Petri net mined using Heuristics Miner++.

1In case there are no intervals, it is possible to add “special intervals” to the log, where each activity
starts and finishes at the same time.

92 11 Heuristics Miner for Time Interval

Fig. 11.4 Comparison of mining results with Heuristics Miner and Heuristics Miner++.

Fig. 11.5 Mining results with different percentages of activities (randomly chosen) expressed as
time interval. Already with 50% the “correct” model is produced.

Second Test: Multiple Processes

For the second test,wedecided to try our algorithmagainst a set of different processes,
to see the evolution of the behavior when only some traces contain activities as time
interval.

11.3 Experimental Results 93

Fig. 11.6 Plot of the F1 measure averaged over 100 processes logs. Minimum and maximum
average values are reported as well.

The dataset we produced contains 100 processes and, for each of them, 10 logs
(with 500 instances each) are generated.Considering the 10 logs, thefirst one contains
no activity as time interval; in the second only one activity (randomly different) is
expressed as time interval; in the third two of those are intervals and so on, until all
activities are expressed as time intervals (Fig. 11.6).

The algorithm Heuristics Miner++ has been executed in the logs observing an
improvement of the generated process model proportional to the number of activities
as time intervals. Figure11.5 presents results of one particular process, which is
mined with different logs (increasing the number of activities expressed as intervals).

In order to aggregate the results in numerical values, we used the F1 measure,
which is described in Sect. 3.1. In particular, true positives are the correctly mined
dependences; false positives are dependences present in the original model but not
in the mined one; and false negatives are dependences present in mined model but
not in the original one.

It is very clear that, even with very small percentages of activities expressed as
intervals, there is an important improvement in the mining results.

Application on a Real Scenario

The adaptation of the Heuristics Miner, presented into this section, has been defined
starting from some data given by the company Siav S.p.A. We tested our approach
against their log. In particular, the original model is the one depicted in Fig. 11.7.

Actually, in this case, all activities are expressed in terms of a set of sub-activities
(and, in particular, only the start event of each sub-activity is recorded) so, during a
pre-processing phase, only the first and last events of each activities were selected, as
presented in Fig. 11.8. This phase gives a good approximation of the time intervals,

http://dx.doi.org/10.1007/978-3-319-17482-2_3

94 11 Heuristics Miner for Time Interval

Fig. 11.7 Representation of the process model, by Siav S.p.A., that generated the log used during
the test of the algorithm Heuristics Miner++.

Fig. 11.8 Graphical representation of the preprocessing phase necessary to handle Siav S.p.A. logs.

even if it is not completely correct: the end event represent the start event of the last
sub-activity and not the actual end event.

Figure11.9 shows the result of themining phase, in whichHeuristicsMiner++ has
been applied. The final model is quite close to the original one and only few edges
are not mined correctly. Specifically, the first error is in the dependency between
Attivita0 and Attivita11, which is not supposed to appear. The second problem is the
missing loop involving Attivita10 and Attivita11. Finally, Attivita10 should not be
connected to Attivita4 however, by analyzing the graph in details, it is possible to
see that this dependency is observed 831 times. Since this value is quite important,
we think this is a misbehavior observed in the log.

11.4 Summary

This chapter proposed the description of a generalization of the Heuristics Miner al-
gorithm (i.e., the HeuristicsMiner++). This new approach uses the activity expressed

11.4 Summary 95

Fig. 11.9 Model mined using Heuristics Miner++ from data generated by model depicted in
Fig. 11.7.

as time intervals instead of single events. We introduced this notion into the previous
algorithm paying attention to the backward compatibility.

With respect to the problems mentioned in Sect. 1.2, this chapter deals with prob-
lem P-02: exploiting as much available information as possible, during the actual
mining phase (see Sect. 8.3). Clearly, there is no final solution for such problem,
which depends on the amount of information available in the log. Another approach
that will exploit additional information will be reported in Chap.14.

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_14

Chapter 12
Automatic Configuration of Mining
Algorithm

In Sect. 1.2 we mentioned several problems connected to process mining and its ap-
plication.P-03 refers to the difficulties in using process mining tools and configuring
algorithms. Typical process mining users are non-expert users, therefore it is hard
for them to properly configure all the required parameters. This problem has been
characterized in Sect. 8.3 as problem during the mining phase.

We first describe how certain characteristics of log files raise the need for hand-
picking the right parameters of a process discovery algorithm. We then propose a
solution to the problem of parameters tuning for the Heuristics Miner++ algorithm.
The approach we adopt [23] starts by recognizing that the domain of real-valued
parameters can be actually partitioned into a finite number of equivalence classes:
so, we suggest to explore the parameters space by a local search strategy driven by

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_12

97

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8

98 12 Automatic Configuration of Mining Algorithm

a Minimum Description Length principle. The proposed result has been then tested
on a set of randomly generated process models, obtaining promising results.

12.1 The Problem of Selecting the Right Parameters

When considering real-world industrial scenarios, it is hard to have access to a
complete log for a process. In fact, typically the log is partial and/or contains some
noise.

We define a log as partial if it does not contain a record for all the performed
activities; instead, it is noisy if either:

1. some activities do not match the “expected” ones;
2. some recorded activities do not match with those actually performed;
3. the order in which activities are recorded may not always coincide with the order

in which the activities are actually performed.

While case 1 may be acceptable in the context of workflow discovery, where the
names of the performed activities are not set or known a priori, cases 2 and 3 may
clearly interfere with the mining of the process, leading to an incorrect control-flow
reconstruction (that is a control-flow different from the one that the process analyst
or the process designer would expect). Because of that, it is important, for a process
mining algorithm, to be noise-tolerant. This is especially true for the task of control-
flow discovery, where it is more difficult to detect errors because of the initial lack
of knowledge on the analyzed process.

A well known example of noise-tolerant control-flow discovery algorithm is
Heuristics Miner (and Heuristics Miner++), above-mentioned in Chap.11. A typical
problem that users face, while using these algorithms, is the need to set the values of
specific real-valued parameters which control the behavior of the mining, according
to the amount and type of noise the user believes is present into the process log.
Since the algorithm constructs the model with respect to the number of observations
in the log, its parameters basically consist of acceptance thresholds on frequencies
of control-flow relevant events, that are observed in the log: if the observed event is
frequent enough (i.e., its frequency is above the given threshold for that event) then
a specific feature of the control-flow, explaining such event, is introduced. Different
settings for the parameters usually lead to different results for the mining, i.e., to
different control-flow networks.

While the introduction of these parameters and its tuning is fundamental to allow
the mining of noisy logs, the unexperienced user may find difficult to understand the
meaning of each parameter and the effect, on the resulting model, of changing the
value of one or more parameters from one value to another one. Sometimes, even
experienced users find it difficult to decide how to set these parameters.

The approach we propose starts by recognizing that the domain of real-valued
parameters can be actually partitioned into a finite number of equivalence classes
and we suggest to explore the parameters space by a local search strategy driven by

http://dx.doi.org/10.1007/978-3-319-17482-2_11

12.1 The Problem of Selecting the Right Parameters 99

a Minimum Description Length principle. The proposed result is then tested on a set
of randomly generated process models, obtaining promising results.

12.2 Parameters of the Heuristics Miner++ Algorithm

The basic measures of Heuristics Miner++ have already been proposed. Here we just
list the parameters of the algorithm and, for each of them, a brief description presents
the ratio of the specific parameter.

Relative-to-best Threshold. This parameter indicates that we are going to accept the
current edge (i.e., to insert the edge into the resulting control-flow network) if
the difference between the value of the dependency measure computed for it and
the greatest value of the dependency measure computed over all the edges is
lower than the value of this parameter.

Positive Observations Threshold. With this parameter we can control the minimum
number of times that a dependency relation must be observed between two ac-
tivities: the relation is considered only when this number is above the parameter
value.

Dependency Threshold. This parameter is useful to discard all the relations whose
dependency measure is below the value of the parameter.

Length-one Loop Threshold. This parameter indicates that we are going to insert a
length-one loop (i.e., a self loop) only if the corresponding measure is above the
value of this parameter.

Length-two Loop Threshold. This parameter indicates that we are going to insert
a length-two loop only if the corresponding measure is above the value of this
parameter.

Long Distance Threshold. With this parameter we can control the minimum value of
the long distance measure in order to insert the dependency into the final model.

AND Threshold. This parameter is used to distinguish between AND and XOR splits
(if there is more than one connection exiting from an activity): if the AND mea-
sure is above (or equal) to the threshold, an AND-split is introduced, otherwise
a XOR-split is introduced.

In order to successfully understand the following steps, let’s point out an important
observation: by definition, all these parameters can have values between −1 and 1 or
between 0 and 1. Only the positive observation threshold requires an integer value
that expresses the absolute minimum number of observations.

In the first step of Heuristics Miner++, the algorithm extracts all the required
information from the process log; then it uses the threshold parameters described
above. Specifically, before starting the control-flow model mining, it creates the data
structures presented in Table12.1, whereAW is the set of activities contained in the
log W . All the entries of this data structures are initialized to 0. Then, for each process
instance registered into the log, if two activities (ai , ai+1) are in a direct succession
relation, the value of directSuccessionCount[ai , ai+1] is incremented, while

100 12 Automatic Configuration of Mining Algorithm

Table 12.1 Data structures
used by Heuristics Miner++
with their sizes. AW is the set
of activities contained in the
log W .

Data structure Matrix size

directSuccessionCount |AW |2
parallelCount |AW |2
dependencyMeasures |AW |2
L1LdependencyMeasures |AW |
L2LdependencyMeasures |AW |2
longRangeDependencyMeasures |AW |2
andMeasures |AW |3

if they are executed in parallel (i.e., the time intervals associated to the two activities
overlap) the value of parallelCount[ai , ai+1] is incremented; moreover, for
each activity a, Heuristics Miner++ calculates the length-one loop measure a ⇒W a
and adds its value to L1LdependencyMeasures[a]. Then, for each activities
pair (ai , a j) Heuristics Miner++ calculates the following:

• the dependency measure ai ⇒W a j and then it adds its value to dependency-
Measures. It must be noticed that, in order to calculate this metric, the values
|ai>W a j | and |ai‖W a j | must be available: these values correspond to the values
found in directSuccessionCount[ai , a j] and parallelCount[ai , a j],
respectively;

• the long distance relation measure a1 ⇒l
W a2 and adds its value to longRange-

DependencyMeasures[a1, a2];
• the length 2 loop measure a1 ⇒2

W a2 and adds its value to L2Ldependency-
Measures.

Finally, for each triple (a1, a2, a3) the procedure calculates the AND/XOR measure
a1 ⇒W (a2 ∧ a3) and adds its value to andMeasures[a1, a2, a3].

When all these values are calculated, Heuristics Miner++ proceeds to the real
control-flow construction. These are the main steps: first of all, a node for each
activity is inserted; then, an edge (i.e., a dependency relation) between two activities
ai and a j is inserted if the entry dependencyMeasures[ai , a j] satisfies all the
constraints imposed byRelative-to-best Threshold,Positive Observations Threshold,
and Dependency Threshold.

The algorithm continues iterating through all the activities that havemore than one
connection exiting from it. It is necessary to disambiguate the split behavior between a
XORand anAND. In these cases (e.g., activityai has two exiting connectionswith ac-
tivities a j and ak), Heuristics Miner++ checks the entry andMeasures[ai , a j , ak]
and, if this is above the AND threshold, it marks it as an AND-split, otherwise as a
XOR-split. If there are more than two activities in the “output-set” of ai , then all the
pairs are checked.

A similar procedure is used to identify length-one loop: Heuristics Miner++ it-
erates through each activity and checks in the L1LdependencyMeasures vec-
tor if the corresponding measure is greater than the Length-one Loop Threshold.
For the length-two loops the procedure checks, for each activities pairs (ai , a j),

12.2 Parameters of the Heuristics Miner++ Algorithm 101

if L2LdependencyMeasures[ai , a j] satisfies the Length-two Loop Threshold
and, if necessary, adds the loop.

The same process is repeated also for the long distance dependency: for each ac-
tivity pairs (ai , a j), if the value of longRangeDependencyMeasures is above
the value of the Long Distance Threshold parameter, then the dependency between
the two activities is added.

Once Heuristics Miner++ has completed all these steps, it can return the final
process model. In this case, the final model is expressed as a Heuristics Net (an
oriented graph, with information on edges, which can be easily converted into a
Petri net).

12.3 Facing the Parameters Setting Problem

As already said, it is not easy for a user (typically process miner users are business
process managers, resources managers, or business unit directors) to decide which
values to use for the parameters described above: she or he may not be an expert
in process mining, and anyway, also an experts in process mining can have an hard
time to figure out which setting makes more sense.

The main issue that makes this decision difficult is the fact that almost all parame-
ters take values in real-valued ranges: there is an infinite number of possible choices!
Moreover, how can it be possible to select the “right” value for each parameter? Is it
preferable to set the parameters in order to generate a control-flow network able to
explain all the cases contained in the log (even if the resulting network is very com-
plex and thus hard to understand by a human), or a simpler, and so more readable,
model (even if it does not explain all the data)?

Here we assume that the user’s desired result of the mining is a “sufficiently”
simple control-flow network able to explain as many as possible cases contained in
the log. In fact, if the log is noisy, a control-flow network explaining all the cases is
necessarily very complex because it has to explain also the noise itself (see [155],
for a discussion on this issue).

On the basis of this assumption, we suggest addressing the parameters setting
problem by a two step approach:

1. identification of the candidate hypothesis that corresponds to the assignments
of values to the parameters that induce Heuristics Miner++ to produce different
control-flow networks;

2. exploration of the hypothesis space to find the “best solution”, i.e. generation of
the simplest control-flow network able to explain the maximum number of cases.

The aim of step 1 is to identify the set of different process models which can be
generated by Heuristics Miner++ by varying the values of the parameters. Among
these process models, the aim of step 2 is to select the process model with the best
trade-off between complexity of the model description and number of cases that the
model is not able to explain. Here, our suggestion is to use theMinimumDescription

102 12 Automatic Configuration of Mining Algorithm

Length (MDL) [71] approach to formally identify this trade-off. In the next two
sections, we describe in detail our definition of these two steps.

12.4 Discretization of the Parameters Values

As discussed in the previous section, by definition, most of Heuristics Miner++
parameters can take an infinite number of values. In practice, only some of them
produce a different model as output. In fact, the size of the log used to perform the
mining can be assumed to be finite, and thus equations for the various metrics can
return only a finite number of different values. These sets, with all the possible values,
are obtained by calculating the results of the formulas against all single activities, all
pairs, and all triples. Specifically, if we look at the data structures used by Heuristics
Miner++, these are populated with all the results just described, so they contain all
the possible values of the measures of interest for the given log. Even considering the
worst case, i.e. when each activity configuration has a different measure value, the
mining algorithm cannot observe more than |AW |i different values for parameters
described by an i-dimensional matrix. Since |AW | is typically a quite low value, even
the worst case does not produce a huge number of possible values. Thus it does not
make sense to let the thresholds to assume any real-value in the associated range.

Given a log W , we can sort, in ascending order, all the different values v1, . . . , vs ,
that a given measure can take. Then, all the values in the ranges [vi , vi+1) with
i = 1, . . . , s constitute equivalence classes with respect to the choice of a value for
the threshold associated to that measure. In fact, if we pick any value in [vi , vi+1),
the output of the mining, i.e. the generated control-flow network, is not going to
change. If the parameters were independent, it would be easier to define the set
of equivalence classes. In fact, given n independent parameters p1, . . . , pn with
domains D1, . . . , Dn , it is sufficient to compute the set of equivalence classes Epi for
each parameter pi , and then obtain the set of equivalence classes over configurations
of the n parameters as the Cartesian product Ep1 × Ep2 × · · · × Epn . This means
that we can uniquely enumerate process models by tuples (d1,i1 , . . . , dn,in), where
d j,i j ∈ D j , j = 1, . . . , n.

Unfortunately, by definition, Heuristics Miner++ parameters are not independent.
This is clearly exemplified by considering only the two parameters Positive Obser-
vations Threshold and Dependency Threshold. If the first one is set to a value that
does not allow a particular dependency relation to appear in the final model (because
it does not occur frequently enough in the log), then, there is no value for the depen-
dency threshold, involving the excluded dependency relation, that will modify the
finalmodel. The lack of independence entails that themining proceduremay generate
exactly the same control-flow network starting by different settings for the parame-
ters. This means that it is impossible to uniquely enumerate all the different process
models by defining the equivalence classes over the parameters values, as discussed
above under the independence assumption. So, since there is not a bijective func-
tion between process models and tuples of discretized parameters, it is not possible

12.4 Discretization of the Parameters Values 103

to efficiently search the “best” model by searching among the discretized space of
parameters. However, discovering all the dependences among the parameters and
then defining a restricted tuple space where there is a one to one correspondence
between tuples and process models would be difficult and expensive. Therefore, we
decided to adopt the independence assumption to generate the tuple space, while us-
ing high level knowledge about the dependences among parameters to factorize the
tuple space, in order to perform an approximate search.

12.5 Exploration of the Hypothesis Space

We have just described a possible way to discover distinct process models produced
by a set with all the values for each parameter. As we have discussed before, each
process model mined from a particular parameters configuration constitutes, for us,
a hypothesis (i.e. a potential candidate to be the final process model). We are, now,
in this situation: (a) it is possible to build a set with all possible parameters values;
(b) each parameters configuration produces a process model hypothesis. Starting
from these two elements, we can realize that we have all the information required for
the construction of the hypothesis space: if we enumerate all the tuples of possible
parameters configurations (and this is possible, since these sets are finite), we can
build the set of all possible hypotheses, which is the hypothesis space. The second
step, described in our approach, requires the exploration of this space, in order to
find the “best” hypothesis.

In order to complete the definition of our search strategy, it is necessary to finally
give a formal definition of our measure of “goodness” for a process model. To this
aim, we adopt the Minimum Description Length (MDL) principle [71]. MDL is a
widely known approach, based on the Occam’s Razor: “choose a model that trades-
off goodness-of-fit on the observed data with ‘complexity’ or ‘richness’ of the model”.
Let’s take as an example the problem of communicating through a very expensive
channel: we can build a compression algorithmwhereby the most frequent words are
represented in the shortest way, while the less frequent have a longer representation.
Now, as first thing to do, we have to transmit the algorithm, then we can use it to
send our encoded messages. We have to pay attention in not building a too complex
(meaning that can handle many cases) algorithm: its transmission may neutralize the
benefits of its use, in terms of total amount of data to be transmitted. Consider now
the set H of all possible algorithms that can be built and, given h ∈ H , let L(h) be its
description size and L(D | h)will be the size of the message D after its compression
using h. The MDL principle tells us to choose the “best” hypothesis hM DL as:

hMDL = argmin
h∈H

L(h) + L(D | h).

In [31], Calders et al. present a detailed approach to compute Minimum Descrip-
tion Length for process mining. In this case, the model is always assumed to be a

104 12 Automatic Configuration of Mining Algorithm

Petri net. Specifically, the proposed metric shows two different encodings, for the
model and for the log:

• L(h) is the encoding of the model h (a Petri net), and lies in a sequence of all the
elements of the net (i.e. places and transitions). For each place, moreover, the sets
of incoming and outgoing transitions are recorded too. The result is a sequence
structured as: 〈transitions, places (with connections)〉.

• L(D | h) represents the encoding of the log D and is a bit more complex. Specif-
ically, the basic idea is to replay the entire log on the model and, every time an
error occurs (i.e. the event of the log cannot be replayed by the model), a “pun-
ishment” is assigned. The approach punishes also the case in which there are too
many transitions enabled at the same time (in order to avoid models similar to the
“flower model”, see Fig. 6.1(b)).

Fig. 12.1 Unbalancing between different weights of L(h) and L(D | h) according to the MDL
principle described in [31]. The left hand side figure shows an important discrepancy, the right hand
one does not.

The same work proposes to weight the two encodings according to a convex combi-
nation, so to let the final user decide how to balance the two weights. We used this
approach to guide the search of the best hypothesis. However, several problems limit
the use of such approach. The most important ones are:

• the reply of the traces is very expensive from a computational point of view. The
approach resulted absolutely unfeasible in industrial scenarios, with “real data”.
For example, after performing several optimizations and executing a simple model
in a controlled environment, the procedure required up to 20h for running1;

• the codomain of the values of the twomeasures (L(h) and L(D | h)) is not actually
bounded (even after the normalization proposed on the plugin implementation2).
Moreover, in our examples, we observed that the values of L(h) and L(D | h)

1These experiments are also reported on theM.Sc. thesis by D. Turato: “Configurazione automatica
di Heuristics Miner++ tramite il principio MDL”, at the University of Padua, Italy.
2See http://www.processmining.org/online/mdl for more information.

http://dx.doi.org/10.1007/978-3-319-17482-2_6
http://www.processmining.org/online/mdl

12.5 Exploration of the Hypothesis Space 105

are very unbalanced, therefore their averaging is not really producing expected
effects. An example of this problem is reported in Fig. 12.13.

Because of these problems, we “relaxed” the measures of the model and of the
data, so to have lighter versions of them, capable of capturing the concepts we need.

12.6 Improved Exploration of the Hypothesis Space

The parameters discretization process does not produce a large number of possible
values but, since the hypothesis space is givenby the combinationof all the parameters
values, this can become quite large, and finding the best hypothesis easily turns into a
quite complex search problem: an exhaustive search of the hypothesis space (that will
lead to the optimal solution) is not feasible. So we decided to factorize the search
space by exploiting high level knowledge about independent relations (both total
and conditional) among parameters, and to explore the so factorized space by a local
search strategy. We are now going to describe the factorization of the search space.

12.6.1 Factorization of the Search Space

HeuristicsMiner++ parameters are not independent. Their dependencies can be char-
acterized by listing the main operations performed by the mining algorithm, and the
corresponding parameters:

1. calculation of the length-one loops and check Length-one Loop Threshold and
Positive Observations Threshold;

2. calculation of the length-two loops and check Length-two Loop Threshold and
Positive Observations Threshold;

3. calculation of the dependency measure and check Relative-to-best Threshold,
Positive Observations Threshold and Dependency Threshold;

4. calculation of AND measure and check AND Threshold;
5. calculation of long distance measure and check Long Distance Threshold.

When more than one parameter is considered within the same operation, all the
corresponding checks have to be considered as in conjunction relation, meaning that
all constraints must be satisfied. The most frequent parameter that is verified is the
Positive Observations Threshold, occurring in three steps; under these conditions,
if, as an example, the dependency relation under consideration does not reach a
sufficient number of observations in the log, then the check of parameters Relative-
to-best Threshold, Dependency Threshold, Length-one Loop Threshold and Length-
two Loop Threshold can be skipped because the whole check (the ‘and’ with all other
parameters) will not pass, regardless of the success of the single checks involving
the Relative-to-best Threshold, the Dependency Threshold, the Length-one Loop
Threshold and the Length-two Loop Threshold.

3See footnote 1.

106 12 Automatic Configuration of Mining Algorithm

Besides that, there are some other intrinsic rules on the design of the algorithm:
the first says that if an activity is detected as part of a length-one loop, then it can’t
be in a length-two loop and vice versa (so, checks in step 1 and step 2 are in mutual
exclusion); another tells that if an activity has less than two exiting edges, then it is
impossible to have an AND or XOR split (and, in this case, step 4 does not need to
be performed).

In order to simplify the analysis of the possible mined networks, we think it is
useful to distinguish two types of networks, based on the structural elements they
are composed of:

• Simple networks, which include processmodels with no loops and no long distance
dependencies;

• Complete networks, which include simple networks extended with at least one
loop and/or one long distance dependency.

For the creation of the first type of networks, only steps 3 and 4 (on the list
at the beginning of this section) are involved: so only Relative-to-best Threshold,
Positive Observations Threshold, Dependency Threshold and AND Threshold have
an important role in the creation of this class of networks. Complete networks are
obtained by adding, to a simple network, one or more loops, by using steps 1 and 2,
and/or one or more long distance dependencies via step 5. It can be observed that,
once the value for Positive Observations Threshold is fixed, steps 1, 2, and 5, are in
practice controlled independently by Length-one Loop Threshold, Length-two Loop
Threshold, and Long Distance Threshold respectively.

12.6.2 Searching for the Best Hypothesis

At this point, the new objective is the definition of the process for the identification of
the “best” model (actually, we have to find the best parameters configuration). There
are two issues here: the first is the definition of some criterion to determine what
means “best model”. Secondly, we will have to face the problem of the hypothesis
space that is too big to be exhaustively explored. We are going to start from the latter
problem, assuming to have a criterion to quantify the goodness of a process model.

Forwhat concerns the big dimension of the search space, we start the searchwithin
the class of simple networks and, once the system finds the “best” local model, it
tries to extend it into the complete network space. With this division of the work, the
system reduces the dimensionality of the search spaces.

From an implementing point of view, in the first phase, the system has to inspect
the joint space composed only of Relative-to-best Threshold, Positive Observations
Threshold, Dependency Threshold and AND Threshold (the parameters involved in
“simple networks”) and, when it finds a (potentially only local) optimal solution, it
can try to extend it introducing loops and long dependency. In Fig. 12.2 we propose
a graphical representation of the main phases of the exploration strategy. Of course,
this search strategy is not complete for two reasons: (i) local search is, by definition,
not complete; and (ii) the “best” process model may be obtained by extending with
loops and/or long dependencies a sub-optimal simple network.

12.6 Improved Exploration of the Hypothesis Space 107

Final solution

“Simple networks” space

“Complete networks” space

Fig. 12.2 Graphical representation of the searching procedure: the system looks for the best solution
on the simple network class. When a (local) optimal solution is found, the system tries to improve
it by moving into the complete network space. Red boxes indicate the neighborhood of the current
node which is drawn in black (Color figure online).

Concerning the actual length measures, we studied, as model complexity L(h),
the number of edges in the network. This is an easily computablemeasure, although it
may underestimate the complexity of the network, because it disregards the different
constructs that compose the network. Anyway, this is a good way to characterize the
description length of the process model.

As L(D | h) measure, we use the fitness measure introduced in [152] and, in
particular, we opted for the continuous semantics one. Differently from the stop
semantics, the one chosen does not stop at the first error, but continues until it reaches
the end of themodel. This choice is consistentwith our objective to evaluate thewhole
process model. This measure is expressed as:

fM,W = 0.4 · parsedActs(M, W)

|AW | + 0.6 · parsedTraces(M, W)

logTraces(W)

where M is the current model and W , as usual, is the log to “validate”; |AW | is
the number of activities in the log and logTraces(W) is the number of traces in
W ; parsedActs(M, W) gives the sum of all parsed activities for all traces in W and
parsedTraces(M, W) returns the number of traces in W completely parsed by the
model M (when the final marking involves only the last activity).

The search algorithm starts from a random point in the “simple network” space
and, exploiting a hill-climbing approach [134], evaluates all the neighbor simple
networks obtained by moving the current value of one of the parameters up or down
of a position within the discretized space of possible values. If a neighbor network
(with a better MDL value) exists, then that network becomes the current one and
the search is resumed until no better network is discovered. The “optimal” simple

108 12 Automatic Configuration of Mining Algorithm

network is then used as starting point for a similar search in the remaining parameters
space, so to discover the “optimal” complete network, if any.

In order to improve the quality of the result, the system restarts the search from
another random point in the hypothesis space. At the end, only the best solution
among all the ones obtained by the restarts is proposed as “final optimal” solution.

12.7 Experimental Results

In order to evaluate our approach,we tried to test it against a large dataset of processes.
In order to assign a score to each mining, we built some random processes and we
generated some logs from these models; starting from these, the system tries to mine
the models. Finally, we compared the original models versus the mined ones.

12.7.1 Experimental Setup

The set of processes to test is composed of 125 process models. These processes
were created using the approach presented in Chap.16.

The generation of the randomprocesses is based on some basic “process patterns”,
like the AND-split/join, XOR-split/join, the sequence of two activities, and so on.
In Fig. 12.3 some statistical features of the dataset are shown. For each of the 125
process models, two logs were generated: one with 250 traces and one with 500
traces. In these logs, the 75% of the activities are expressed as time intervals (the
other ones are instantaneous) and 5% of the traces are noise. In this context, “noise”
is considered either a swap between two activities or removal of an activity.

Fig. 12.3 Features of the processes dataset. The left hand side plot, reports the number of processes
with a particular number of patterns (AND/XOR splits/joins and loops). The plot in the right hand
side contains the same distribution versus the number of edges, the number of activities and the
Cardoso metric [32] (all these are grouped using bins of size 5).

http://dx.doi.org/10.1007/978-3-319-17482-2_16

12.7 Experimental Results 109

We tried the same procedure under various configurations: using 5, 10, 25 and 50
restarts. In the implemented experiments, we run the algorithm allowing 0, 1, 5 and
10 lateral step, in case of local minimum (in order to avoid problems in case of very
small plateau).

The distance of the mined process from the correct one is evaluated with the F1
measure (see Sect. 3.2).

12.7.2 Results

Thenumber of improvement steps performedby the algorithm is reported inFig. 12.4.
As shown in the figure, if the algorithm is run with no lateral steps, then it stops early.
Instead, if lateral steps are allowed, the algorithm seems to be able, at least in some
cases, to get out of plateaus. In our case, even 1 step shows a good improvement in
the search. The lower number of improvement steps (plot on the right hand side), in
the case of 500 traces, is due to the fact that, with more cases, it is easier to reach an
optional solution.

Fig. 12.4 Number of processes whose best hypothesis is obtained with the plotted number of steps,
under the two conditions of the mining (with 0, 1, 5 and 10 lateral steps). The left hand side plot
refers to the processes mined with 250 traces while the right hand side refers to the mining using
500 traces.

The quality of the search mining result, as measured by the F1 measure, is shown
in Fig. 12.5. Results for 250 traces are reported in the left hand side plot, while results
for 500 traces are shown in the right hand side plot. It is noticeable that the average
F1 is higher in the 500-traces case. This phenomenon is easily explainable since,
with a larger dataset, the miner is able to extract a more reliable model.

Several tests have been performed considering also the MDL approach described
in [31] (presented in Sect. 12.5)4.However, due to the time required for the processing

4See footnote 1.

http://dx.doi.org/10.1007/978-3-319-17482-2_3

110 12 Automatic Configuration of Mining Algorithm

Fig. 12.5 “Goodness” of the mined networks, as measured by the F1 measure, versus the size of
the process (in terms of Cardoso metric). The left hand size plot refers to the mining with 250 traces,
while the right hand side plot refers to the mining with 500 traces. Dotted horizontal lines indicate
the average F1 value.

of the entire procedure, we considered only a fraction of our dataset: 93 process
models (the simplest ones), logs with only 250 traces and with no noise. Results are
reported in Fig. 12.6.

For these experiments we have tried 3 different values of the α parameter of the
“classic”MDLapproach (α = 0.3,α = 0.5, andα = 0.7).Moreover, concerning our
new MDL definition, we do not divide the hypothesis space in simple and complete
networks, but we just looked for the best model (to have values that can be reliably
compared). Figure12.6(a) proposes the number of improvement steps performed
by the two approaches; Fig. 12.6(b) shows the average F1 score of the approaches
with respect to values of the Cardoso metric and, finally, Fig. 12.6(b) presents the
execution times. Please note that the execution times, using our improved approach,
have significantly drop (more thanoneorder ofmagnitude),whereas the improvement
steps and the F1 measure reveal that there is absolutely no loss of quality.

For the last comparison proposed, we used a behavioral similarity measure. The
idea underpinning this measure, which will be presented in details in Subsect. 15.1.3,
is to compare all the possible dependencies that the two processes allow and all the
dependencies that are not. Therefore, the comparison is performed according to the
actual behaviors of the two processes, independently of their edges. Such approach,
differently from the F1, is also able to discriminate AND and XOR connections.
Figure12.7 shows the similarity values of all the models. In this case (as in the
previous ones), we do not divided the set of models in simple and complete networks.
As it could be seen, our improved approach is not penalized in any way, with respect
to the well founded MDL executions. Instead, for several processes it seems to be
able to obtain even better models.

http://dx.doi.org/10.1007/978-3-319-17482-2_15

12.7 Experimental Results 111

Fig. 12.6 Comparison of results considering the classical MDL measures and the improved ones.
These results refer to runs with 10 lateral steps and 10 random restarts.

Fig. 12.7 Performance comparison in terms of Alpha-based metric. These results refer to runs with
10 lateral steps and 10 random restarts.

112 12 Automatic Configuration of Mining Algorithm

12.8 Summary

The issue taken into account in this chapter deals with the configuration of parame-
ters of mining algorithms. Specifically, we focused on Heuristics Miner++ and we
proposed a way to discretize the parameters space according to the traces in the log.
Then, we suggested to perform a constrained local search in that space to cope with
the complexity of exploring the full set of candidate process models. The local search
is driven by the MDL principle in order to find the “best model”. Such model is the
one trading-off the complexity of its description, with the number of traces that it
can explain.

With respect to the problems pointed out in Sect. 1.2, this chapter deals withP-03:
problems occurring during the actual mining (see Sect. 8.3). The solution proposed
in this chapter is completely automatic; instead, Chap. 13 will describe a solution for
an interactive way of solving the same problem.

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_13

Chapter 13
User-Guided Discovery of Process Models

As mentioned in Sect. 1.2, problem P-03 deals with difficulties in using process
mining tools and configuring algorithms (see Sect. 8.3). In Chap.12 we presented a
completely automatic approach to solve P-03. This chapter, instead, presents a more
flexible solution, which requires the interaction of a user.

The approach that will be described shifts the problem from choosing the best
parameters configuration to selecting themodel that better describe the actual process
performed. This is the main reason why such approach can also be called “parameter
configuration via result exploration”. The idea can be split in the following steps:

1. the system receives a log as input;
2. the space of the parameters can be discretized in order to consider only the mean-

ingful values (from an infinite space to a finite one);

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_13

113

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_12

114 13 User-Guided Discovery of Process Models

3. all the distinct models that could be generated starting from the parameters are
eventually build, so to have an exhaustive list of all the models that can be inferred
starting from the log;

4. all the generated processes are clustered;
5. the hierarchy of clusters is “explored” by the user by drilling down on the direction

that he/she thinks being the most promising one.

A practical example of the above-mentioned approach is presented in the following
sections.

13.1 Clustering for Process Mining

Once a model-to-model metric is available, it is possible to cluster processes in
hierarchies. We decided to use an agglomerative hierarchical clustering algorithm
[103] with, in this first stage, an average linkage (or average inter-similarity): in this
case the similarity s between two clusters, c1 and c2, is defined as the similarity of
all the pairs of activities belonging to the two clusters:

s(c1, c2) = 1

|c1||c2|
∑

pi ∈c1

∑

p j ∈c2

d(pi , p j)

The basic idea of agglomerative hierarchical clustering is to start with each ele-
ment in a singleton cluster and, at each iteration of the algorithm, to merge the two
closest cluster into a single one. The procedure iterates until a single cluster remains,
containing all the elements. The typical way of representing a hierarchical clustering
is using a dendrogram, which represents how the elements are combined together.

13.2 Results on Clustering for Process Mining

Clustering of business processes can be used to allow non-expert users to perform
process mining (as control-flow discovery). A proof of concept procedure has been
implemented.

The approach has been tested on a process logwith 100 cases and 46 event classes,
equally distributed among each case, with 2 event types. The complete set of possible
business process ismade of 783models thatwere generated starting from the possible
configurations of the algorithm Heuristics Miner++.

A complete representation of the clusters generated from such dataset has not been
created because of problems in exporting the image, however, a representation of a
subset of them (350 process models) is proposed in Fig. 13.1. This is a dendrogram
representation of the hierarchy that comes out of the distance function presented in

13.2 Results on Clustering for Process Mining 115

Fig. 13.1 Distancematrix of 350 processmodels, generated as different configuration of theHeuris-
tics Miner++ parameters. The brighter an area is, the higher is the similarity between the two
processes (e.g., the diagonal). The dendrogram generated starting from the distance matrix is pro-
posed too.

previous sections. The distance matrix, with distances per each pair of models, is
presented as well.

Concerning the approach “parameter configuration via result exploration”, the
idea is to start from the “root” of the dendrogram and “navigate” it until a leaf is
reached. Since a dendrogram is a binary tree, every cluster ismade of two sub-clusters
that are represented by their corresponding medoids. These two process models (i.e.,
the medoids) are proposed, at each step, to the user, who can decide which is the
best “direction” to follow. In the first steps, the user will be asked to select between
models that are very different each other. As long as the user takes decisions, the
processes to compare will be closer each other, so the user decision can be based on
very different and detailed aspects.

Figure13.2 reports the dendrogram with α ∈ {0, 0.5, 1}. Hierarchical clustering
has been performed on 10 randomly generated business processes. The result is
presented in the figure. In the lower part of the same figure examples of two processes
considered “distant” are also reported.

13.3 Implementation

All the techniques described in this book have been implemented in ProM. Both
version 5 [173] and 6 [179] have been used.

116 13 User-Guided Discovery of Process Models

Fig. 13.2 The topmost figures represent three dendrograms. The two Petri nets are examples of
“distant” processes.

ProM1 is a framework which can be extended and used through a plugin ar-
chitecture. Several plugins are available, implementing a series of process mining
algorithms. The main advantage in using ProM consists in having all the basic oper-
ations (e.g. log and models input/output and graphic visualizers) available in a single
and open-source framework. Starting from ProM 6, the default input format for log
files is XES [75]2 (Listing 17.1 proposes a fragment of XES code), but MXML [73]
is still supported as well. ProM is platform independent and it is written in Java. Cur-
rently, ProM ismaintained by the ProcessMiningGroup3 of the EindhovenTechnical
University4.

The Heuristics Miner++ algorithm, described in Chap.11, has been implemented
in ProM 5. Figure13.3 proposes a couple of screenshots of the implementation of
Heuristics Miner++. The same figure proposes a visualization of the parameter dis-
cretization.The implementation canbedownloaded fromhttp://www.processmining.
it/sw/hmpp.

The automatic approach, described in Chap.12, has been implemented in ProM
5 but only as a command line application, since it is supposed to periodically run in
an autonomous manner.

Apart from this mining plugins, a “time filter plugin” has been implemented in
ProM 6, as presented in Fig. 13.4. The basic idea is to present a log as a dotted chart
[142] (not dots for events, but lines for traces). It is possible to sort the log according

1See http://www.promtools.org/ for more information.
2The IEEE Task Force on Process Mining Meeting, at the BPM 2012 meeting, decided to start the
procedure to let XES (http://www.xes-standard.org/) become an IEEE standard (http://standards.
ieee.org/).
3http://www.processmining.org/.
4http://www.tue.nl/.

http://dx.doi.org/10.1007/978-3-319-17482-2_11
http://www.processmining.it/sw/hmpp
http://www.processmining.it/sw/hmpp
http://dx.doi.org/10.1007/978-3-319-17482-2_12
http://www.promtools.org/
http://www.xes-standard.org/
http://standards.ieee.org/
http://standards.ieee.org/
http://www.processmining.org/
http://www.tue.nl/

13.3 Implementation 117

Fig. 13.3 The figure on the left hand side contains the configuration panel of Heuristics Miner++,
where parameters are discretized. The screenshot on the right hand side shows the result of the
mining.

Fig. 13.4 Time filter plugin, with traces sorted by starting point and with a fraction of the log
selected.

to the traces duration or according to the trace starting time. Using two “sliders”, the
analyst can select a subset of the current log. Moreover, the plugin gives information
on the percentage of traces and events selected: this allows you, for example, to select
only the top 10% longest traces. Finally, the selected traces can be “exported” in
order to be analyzed independently from the rest of the log, to get more insights on
particular cases (e.g. outliers).

118 13 User-Guided Discovery of Process Models

13.4 Summary

This chapter focused on the problem of parameters setting for Heuristics Miner++.
In particular, we proposed a user-guided approach.

Specifically, given a discretization of the parameter values, the user-guided con-
figuration is actually an alternative approach to explore the space of models: the user
explores such space of processes through the medoids of the clusters resulting as
output of the generation of all the models (obtained performing the mining with all
the different configurations).

With respect to the problems pointed out in Sect. 1.2, this chapter deals with
P-03: problems occurring during the actual mining (see Sect. 8.3). The solution
proposed in this chapter requires the interaction of the user; instead,Chap. 12 reported
a completely automatic solution to tackle the same problem.

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_12

Chapter 14
Extensions of Business Processes
with Organizational Roles

Chapter5 presents the three basic types of process mining, which are also described
in Fig. 5.1. Moreover, as stated in Sect. 5.2, several perspectives might be involved
in process mining. Specifically, it is possible to concentrate on:

• the control-flow, which is a (possibly graphical) representation of the business
process model (i.e., the ordering of activities);

• the organizational perspective, which focuses on the interactions among activities
originators;

• focusing on cases (single process instances) may help identifying peculiarities
based on specific characteristics (for example, which case conditions lead to a
particular path of the process model);

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_14

119

http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_5
http://dx.doi.org/10.1007/978-3-319-17482-2_5

120 14 Extensions of Business Processes with Organizational Roles

• the time perspective is extremely useful to measure and monitor the process, for
example to find bottlenecks or predict the remaining time of a case.

In this chapter, we concentrate on the extension of a process from the organiza-
tional perspective. Specifically, we present an approach [29] which, given a process
model and a log in input, tries to partition the set of activities of the process into
“swimlanes”. This partitioning is performed by grouping originators in roles and
associating activities with the corresponding role.

The approach proposed in this chapter is based on the identification of roles and
this is, in turn, basedon the observationof the distributionof originators over activities
and roles. This division is extremely important and gives new detailed insights on the
process model (which can be extracted using discovery techniques). For example, it
is possible to compare the actual roles distribution with the mined ones or to analyze
the proposed roles in order to improve the current organization.

The approach proposed in this work, summarized in Fig. 14.1, is composed of two
phases: it starts from the original process model and, in the first phase, each edge of
the process model is weighted according to the corresponding level of handover of
role. Edges with weight below a threshold are removed from the model. Resulting
connected components are considered as belonging to the same role. The second
phase of the approach aims at merging components that, in the original process
model, were not close to each other.

With respect to the problems mentioned in Sect. 1.2, this chapter deals with both
P-02 and P-03, which are also discussed in Sect. 8.3. In fact, the proposed approach
exploits additional information available in the log and, at the same time, performs
such operation without requiring any user interaction.We first present the framework
that we are going to use throughout the chapter, then each step of the approach is
separately presented. Final evaluation and a summary conclude the chapter.

14.1 Working Framework

Given a business process P , it is possible to identify its set of tasks (or activities)
A and the set U with all the involved originators (e.g. person, resources, …). In
this context, the complete set of observable events, generated by P , is defined as
E = A × U .

A process can generate a log L = {e1, . . . , en}, which is defined as a set of traces.
Each element of the log identifies a case (i.e. a process instance) of the observed
model. A trace e = 〈e1, . . . , em〉 is a sequence of events, where e j ∈ E represents
the j th event of the sequence. With ei ∈ e we indicate that event ei is contained in
the sequence e.

Given a process model P , let D(P) be the set of direct dependencies (i.e. di-
rected connections) of the process model. For the sake of simplicity, whenever there
is no ambiguity on the process P , we assume D as a synonym of D(P). For ex-
ample, the set D of the process model depicted in Fig. 14.1(a) is: D = {A → B,

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8

14.1 Working Framework 121

Fig. 14.1 Input and expected output of the approach presented in this chapter.

A → C, B → D, C → D, D → E}. We assume to have the possibility to “replay”
activities of traces on the process model (e.g. [150] proposes an approach for replay).

Given an event e ∈ E , such that e = (a, u), let’s define the typical projection
operators πA(e) = a and πU (e) = u. Moreover, let us define the operator Ua(L) as:

Ua(L) = {πU (e) | ∃e∈L e ∈ e ∧ πA(e) = a}.

Given a dependency a → b ∈ D , it is possible to define the set of couples of
originators Ua→b(L):

Ua→b(L) = {(πU (ei), πU (e j)) | the replay algorithm identifies a

dependency of a → b mapped to ei and e j }.

This operator returns the set of couples of originators, in the log L , that performs the
dependency a → b.

Similar operators are U a
a→b(L) and U b

a→b(L). They can be used to obtain origi-
nators of activity a or b, when they are involved in the dependency a → b:

U a
a→b(L) = {ui | (ui , u j) ∈ Ua→b(L)},

U b
a→b(L) = {u j | (ui , u j) ∈ Ua→b(L)}.

On all these sets, it is possible to apply the classical Relational Algebra operators
[53]. For example, with the selection operator it is possible to define:

122 14 Extensions of Business Processes with Organizational Roles

σ=(Ua→b(L)) = {(ui , u j) | (ui , u j) ∈ Ua→b(L) ∧ ui = u j }.

For simplicity, whenever there is no ambiguity on L , we assume Ua , Ua→b and
U a

a→b as a synonyms of Ua(L), Ua→b(L) and U a
a→b(L), respectively.

Given the sets Ua(L), Ua→b(L), and U a
a→b(L), we want to define the multisets

[144]Ua(L),Ua→b(L), andU a
a→b(L) which take into account the frequency of the

originators in L:

Ua(L) = 〈Ua(L), fUa 〉 Ua→b(L) = 〈
Ua→b(L), fUa→b

〉

U a
a→b(L) = 〈U a

a→b(L), fUa
a→b

〉

where fUa , fUa→b , and fUa
a→b

are the multiplicity functions, which indicate the num-
ber of times that each element of the corresponding set is observed in L . For example,
given u ∈ Ua(L), fUa (u) returns the number of times that the originator u performs
activity a in L . In this work, the cardinality of a multiset M = 〈M, fM 〉 is defined
as the sum of the values of the multiplicity function, for the elements of the multiset:

|M | =
∑

m∈M

fM (m).

The intersection of two multisetsM1 = 〈M1, fM1〉 andM2 = 〈M2, fM2〉 is defined
as the intersection of the two sets M1 and M2 and the multiplicity function is defined
as the minimum between the multiplicity values:

M1 ∩ M2 = 〈M1 ∩ M2,min{ fM1(x), fM2(x)}〉.

In this context, we will also consider the sum of multisets. Given M1 = 〈M1, fM1〉
and M2 = 〈M2, fM2〉, the sum is defined as:

M1 	 M2 = 〈M1 ∪ M2, fM1(x) + fM2(x)〉.

For the sake of simplicity, we will omit L whenever there is no ambiguity (e.g,
Ua instead of Ua(L)). Moreover, the notation M = {ax , by} identifies the multiset
where a has multiplicity x and b has multiplicity y.

The selectionoperatorσθ canbeused alsoonmultisets. For example,σ=(Ua→b) =
〈σ=(Ua→b), fUa→b 〉 (where the multiplicity function is defined only on elements of
the set σ=(Ua→b)).

The problem we will try to solve is to find a partition [18] R ⊂ P(A)1 of the
set of activities A, given a log L and the original process P , such that:

• ⋃
R = A, i.e., the partitioning R covers the entire set of tasks A; and

• for each X, Y ∈ R, such that X �= Y , X ∩Y = ∅, i.e., all the partitions are pairwise
disjoint.

1P(A) identifies the powerset of A.

14.1 Working Framework 123

From the business point of view, we are requiring that each activity needs to belong
to exactly one role. The partition R identifies the set of roles of the process. In this
context, the term “partition of activities” and “role” are used as synonyms.

Let |L| be the size of the log, i.e., the number of traces it contains. Given a log L
and an originator u ∈ U , we define |L|u as:

|L|u =
∑

e∈L

|e|∑

i=1

|{ei | πU (ei) = u}|.

In other words, |L|u returns the number of times that originator u executes activities
in L . A similar measure, which also takes into account the role, is |L|uR , where u is
an originator and R is a role (i.e. a set of activities):

|L|uR =
∑

e∈L

|e|∑

i=1

|{ei | πA(ei) ∈ R ∧ πU (ei) = u}|.

Finally, given a log L and a partition R, it is possible to define the multiset of
originators involved in the role as:

UR(L) =
⊎

a∈R

Ua(L).

As presented in Sect. 14.5, approaches for the identification of the handover of
work between originators already exist; however, this work proposes an approach
to point out handover of roles and therefore the identification of roles themselves.
This operation is based on who are the activity originators. Specifically, we assume
that, under ideal scenarios, there is a clear distinction among originators performing
activities belonging to different roles. However, it is really difficult to observe such
clear distinction in business environments (i.e., originators are involved in several
roles) and thus we need to resort to a metric to measure the degree of handover
between roles. This, and how to define a role, are the topics covered by the next
section.

14.2 Rules for Handover of Roles

As stated in the previous section, the identification of business roles, as presented in
this work, assumes that an activity is not allowed to belong to different roles at the
same time. Let us recap: given a process P and the dependency a → b ∈ D(P),
U a

a→b(L) is the multiset of originators (with frequencies) that perform the activity
a (as part of the dependency a → b) in the log L; and Ua→b(L) identifies the set
of couples of originators (with frequencies) performing a followed (possibly after
some time) by b.

124 14 Extensions of Business Processes with Organizational Roles

Given a dependency between two activities, we present a couple of rules which,
combined, indicate if there is handover of role between the two activities. Specifically,
the combination of rules indicates a measure of the expectation of handover between
roles.

14.2.1 Rule for Strong No Handover

The first rule is used to identify the absence of handover of role. In this case, given
the multiset Ua→b for a dependency between two activities a → b, the idea is to
check if there are couples (u, v) ∈ Ua→b such that u = v. If this is the case, it means
that there is an originator performing both a and b. As stated previously, we assume
that one person hardly holds more than one role; thereby there is no handover of role
between subsequent activities performed by the same originator.

14.2.2 Rule for No Handover

The previous rule applies only on very specific situations. More generally, given a
dependency a → b ∈ D , if the two sets of originators are equal, i.e. Ua = Ub, we
assume there is no handover of role. This rule can be seen as a weaker version of
the previous one: there are originators interchangeably performing a and b. On the
contrary, ifUa ∩ Ub = ∅ then, each activity has a disjoint set of originators and this
is the basic assumption to have handover of role between a and b.

In typical business scenarios, however, it is very common to have border-line situ-
ations, and that is why a “boolean-valued” approach is not feasible. In the following,
we propose a metric to capture the degree of handover of role between two activities.

14.2.3 Degree of No Handover of Roles

Given a process P , a dependency a → b ∈ D(P), and the respective multisets
U a

a→b, U
b

a→b and Ua→b, it is possible to define the degree of no handover of role
wab, which captures the rules above mentioned:

wab(L) = |U a
a→b(L) ∩ U b

a→b(L)| + |σ=(Ua→b(L))|∣∣U a
a→b(L)

∣∣ + ∣∣U b
a→b(L)

∣∣ , (14.1)

The numerator of this equation considers the intersection of the two multisets of
originators (to model no handover) plus the number of originators that perform both
activities a and b (to model strong no handover). These weights are divided by the
sum of the sizes of the two multisets of originators.

By definition, Eq. 14.1 identifies the absence of handover of role. Specifically, it
assumes values in the closed interval [0, 1], where 1 indicates there is no handover

14.2 Rules for Handover of Roles 125

of roles and 0 indicates handover. Since the ideal case (i.e., completely disjoint sets
of originators for each role) is very unlikely, we propose to use a threshold τw on the
value wab. If wab > τw, then there is no handover of roles; otherwise the handover
occurs. A partition of the activities can then be obtained by removing from the process
model all the dependencies which corresponds to handovers: connected activities are
in the same element of the partition (see Fig. 14.2).

Example 14.1. Given a process P , a log L , and the dependency a → b ∈ D(P),
assume that:

• U a
a→b(L) = {

u1
1, u1

2, u1
3

}
,

• U b
a→b(L) = {

u1
1, u1

2, u1
3

}
, and

• Ua→b(L) = {
(u1, u1)

1, (u2, u2)
1, (u3, u3)

1
}
.

The value wab(L) = 1 strongly indicates there is no handover of role in this case. In
fact, as the set Ua→b(L) suggests, the same originator is observed performing both
a and b several times.

Example 14.2. Let’s now consider a scenario completely different from
Example14.1. Given a process P , a log L , and the dependency a → b ∈ D(P),
assume that:

• U a
a→b(L) = {

u1
1, u1

2, u1
3

}
,

• U b
a→b(L) = {

u1
4, u1

5, u1
6

}
, and

• Ua→b(L) = {
(u1, u4)

1, (u2, u5)
1, (u3, u6)

1
}
.

The value wab(L) = 0 strongly indicates the presence of handover of role. It is
evident that the two sets of originators do not share any person and, based on our
assumptions, this is a symptom of handover.

Example 14.3. Consider now a third example, in the middle between Example14.1
and Example14.2. Given a process P , a log L , and the dependency a → b ∈ D(P),
assume that:

• U a
a→b(L) = {

u1
1, u1

2, u1
3

}
,

• U b
a→b(L) = {

u1
1, u1

2, u1
4

}
, and

• Ua→b(L) = {
(u1, u1)

1, (u2, u4)
1, (u3, u2)

1
}
.

In this case, wab(L) = 0.5 so there is no clear handover. Looking at the originator
sets, u1 performs subsequently a and then b, in one case. Moreover, u2 is observed
performing both a and b but not on the same process instance. In this example, it turns
out to be fundamental the value of the threshold τw, in order to decide if handover
of role occurs.

14.2.4 Merging Roles

Asmentioned in the introductory part, the approach presented in this context is based
on two steps: the first step identifies handover of roles (through the metric wab and

126 14 Extensions of Business Processes with Organizational Roles

the threshold ρw), which induces a partition of activities, i.e. roles. Clearly, this way
of performing the partitioning is too aggressive: if the control-flow “comes back”
to roles already discovered, the handover does not entail the creation of a new role.
The aim of the second step is to merge partitions that are supposed to represent the
same role. Given a process P and a log L , the first step generates a partitioning R of
the activities. In order to merge some roles, we propose a metric which returns the
merging degree of two partitions. Given two roles Ri , R j ∈ R:

ρRi R j (L) = 2|URi (L) ∩ UR j (L)|
|URi (L)| + |UR j (L)| . (14.2)

The basic idea of this metric is the same as presented in Eq.14.1, i.e., to measure the
amount of shared originators between the two roles. This metric produces values on
the closed interval [0, 1] and, if activities of the two partitions are performed by the
same originators, the value of the metric is 1: therefore the two roles are supposed
to be the same and merged. If the roles have no common originators, then the value
of ρ is 0 and the roles are kept separated.

Due to the blurry situations that are likely in reality, a threshold τρ is employed:
if ρRi R j (L) > τρ then Ri should be merged with R j ; otherwise they are considered
distinct roles.

14.3 Algorithm Description

In this section, we are going to provide some algorithmic details concerning the two
previously described steps. We will do this with the help of the process described
in Fig. 14.1(a). Moreover, we will suggest an algorithm to generate all “plausible”
partitions of activities (sets of candidate roles).

14.3.1 Step 1: Handover of Roles Identification

The first step of our approach consists in the identification of the partitions induced
by every handover of role. Please note that, in our context, an handover of role may
occur only when the work passes from one activity to another (i.e., dependencies
between activities of the process).

To achieve our goal, given a process P , the algorithm starts by extracting all the
dependencies D(P). After that, every dependency is weighted using Eq.14.1 (the
result is reported in Fig. 14.2(a)). At this point, we apply a threshold τw. Specifically,
we consider a particular dependency as handover of role only if its weight is less or
equal to τw. Every time an handover is observed, the corresponding dependency is
removed from the process.

14.3 Algorithm Description 127

Fig. 14.2 Process model of Fig. 14.1(a) with weights associated to every dependency (top), and
after the dependencies associated to handover of roles are removed (bottom). Activities are thus
partitioned into the subsets {A}, {B}, {C}, {D, E}.

Let’s consider again the example process of Fig. 14.1(a) and the weights of
Fig. 14.2(a). Let’s assume wab ≤ τw, wac ≤ τw, wbd ≤ τw, wcd ≤ τw and
wde > τw. Figure14.2(b) reports the process obtained after handover of roles have
been removed.

At the end of the first step, four roles have been identified: {A}, {B}, {C}, and
{D, E}. These roles correspond to the activities of the connected components [41]
of Fig. 14.2(b).

14.3.2 Step 2: Roles Aggregation

As previously stated, the first step of the approach identifies roles which may be too
fine grained. For example, in Fig. 14.2(b) each connected component represents a
role, however, as Fig. 14.1(b) shows, we actually want A in the same role of D and
E , and we want B together with C . In this step, we use Eq.14.2 to evaluate if any
couple of roles may be merged.

Algorithm4 proposes the pseudocode of the procedure used in the second phase.
It requires, as input, a log L , a set of roles (i.e., a partitioning of activities) R and a
value for the threshold τρ . First of all, the algorithm finds the best pairs of roles that
can be merged (line3), i.e., pairs with maximal ρ. If the best value of ρ is above the
threshold τρ , it means that it is possible to merge two roles. However, several pairs
may have the same maximal ρ. The criterion to select just one pair is to consider
the roles that maximize the number of affected originators. If there are several pairs
with identical ρ values and number of affected originators, we choose the pair that

128 14 Extensions of Business Processes with Organizational Roles

Algorithm 4. Algorithm to perform roles aggregation (i.e. “Step 2”)
Input: Log L; a set of roles R; and threshold τρ ∈ [0, 1]

1 repeat
2 ρmax ← max(Ri ,R j)∈R×R ρRi R j (L)

3 Rρmax ← argmax(Ri ,R j)∈R×R ρRi R j (L) /* Maximals */

4 if ρmax ≥ τρ then
5 Choose (Ri , R j) ∈ Rρmax /* Selection is performed considering

the couple that maximizes the number of merged
originators, if necessary the number of merged
activities and, finally, the lexicographical order of
role activities. */

6 R ← (R \ {Ri , R j }) ∪ {Ri ∪ R j } /* Merge Ri and R j */
7 end
8 until no merge is performed
9 return R

maximizes the number of merged activities. If we still have more than one pair,
we just pick the first pair according to lexicographical order of contained activities
(line5). The two selected candidate roles are then merged. The same procedure is
repeated until no more roles are merged (line8), i.e., there is no pair with value of ρ

above the threshold τρ . Finally, the modified set of roles is returned (line9).

14.3.3 Generation of Candidate Solutions

The approach, as presented so far, requires the configuration of two thresholds, i.e.
τw and τρ . Little variations in configuration of these parameters may lead to very
different roles. To tackle this problem, we thought it might be interesting to extract
all the significant partitioning and propose them to the user. Given the set of tasks A,
the number of possible partitions is identified by the Bell number [18]. This quantity,
given n as the size of the set, is recursively defined as:

B(n) =
n−1∑

t=0

(
n − 1

t

)
B(t)

Figure14.3 presents the explosion of the number of possible partitioning, given the
number of elements of a set.

By construction, the proposed approach requires two parameters: τw and τρ . The
values of these two thresholds are required to be in the interval [0, 1]; however, it
can be seen that only a finite number of values produces different results (similarly
to the problem tackled in Sect. 12.4).

As example, given τw, we can use it to remove edges from the original process.
Since the number of edges of a process is finite, there is a finite number of values

http://dx.doi.org/10.1007/978-3-319-17482-2_12

14.3 Algorithm Description 129

Fig. 14.3 Representation of the growth of the possible partitioning number, given the number of
elements of a set.

Algorithm 5.Complete algorithm to automatically find all different partitioning
of activities, given a log, and a process model.

Input: Process P; and a log L
1 S ← ∅ /* Set of final solutions */
2 T w ← {wab(L) | a → b ∈ D(P)}
3 forall the τw ∈ T w do
4 Copy the process P in P ′

/* Step 1 */
5 forall the a → b ∈ D(P) do
6 if wab(L) ≤ τw then
7 Remove dependency a → b from P ′
8 end
9 end

10 R ← set of activities in connected components of P ′
11 T ρ ← {ρRi R j (L) | Ri , R j ∈ R}
12 forall the τρ ∈ T ρ do

/* Step 2 */
13 Rfinal ← Roles Merger (L , R, τρ) /* See Algorithm 4 */
14 S ← S ∪ {Rfinal} /* Consider the new solution */
15 end
16 end
17 return S

of τw that splits activities of the process. The same observation can be applied to
enumerate the possible values of τρ .

The algorithm described in Algorithm5 proposes an approach which automati-
cally extracts all the significant configurations of τw and τρ and returns such set of
solutions. Specifically, line2 collects all the significant values of τw. All these values
are used to remove the handover of roles (line5–9). In line11, given the partitioning

130 14 Extensions of Business Processes with Organizational Roles

just obtained, the set of all significant values for τρ is generated. These are considered
for the computation of step 2 (line13). The returned result consists of a set containing
all the significant partitions (with respect to the log L) that can be extracted.

The algorithm proposed in Algorithm5 has a worst-case complexity which is
O(n3), where n is the number of edges (i.e. dependencies) of the given process
model. In fact, it is possible that each dependency of the process has a different
weight wab. The same situation may happen when considering ρAB : it is possible
to have n clusters from step 1, and each pair of them can have a different value of
ρAB . However, it is important to note that, typically, n is relatively small and, more
importantly, is independent from the given log. In particular, it is necessary to analyze
the log (linear complexity, with respect to the number of events it contains), but this
operation is performed only once: all the other activities (reported in Algorithm5)
can use the already collected statistics.

It is possible to sort the set of partitions according to the number of roles. This
ordered set is then proposed to the final user. In this way, the user will be able to
explore all the significant alternate definitions of roles.

14.3.4 Partition Evaluation

A possible way to evaluate the discovered partitions is to use the concept of entropy
[139]. In this context, we propose our own measure. Specifically, given R as the
current partition, i.e., set of roles (each role is a set of activities), U as the set of
originators, and L as a log, we define an entropy measure of the partition as:

H(R, L) =
∑

u∈U

∑

R∈R

−|L|uR
|L|u log2

(|L|uR
|L|u

)
. (14.3)

Let us recall that |L|uR is defined as the number of times that activities belonging
to the role R, and performed by user u, are observed in L; and that |L|u is defined
as the number of activities executed by originator u in the log L . This measure is
zero if each originator is involved in one and only one role. Otherwise, the measure
increases with the degree of mixture of contribution of originators to multiple roles.

14.4 Experiments

The approach just presented has been evaluated against a couple of artificial dataset.
In our datasets, we already have the target partitioning (i.e. the expected roles) and,
given a log, our goal is to discover those roles. To evaluate our results, we will
compare the target roles with the extracted ones and we will use a measure inspired
by purity [103]. Let us recall that A represents the set of activities (or tasks) of the

14.4 Experiments 131

process and that a role is a set of activities. |R| is the number of activities contained
in R. Given the target partition (i.e. a set of roles) Rt and the discovered one Rd , our
degree of similarity is defined as:

similarity = 1

|Rd |
∑

Rd∈Rd

max
Rc∈Rc

2|Rd ∩ Rc|
|Rd | + |Rc| .

The idea behind this formulation is that, if the partitioning discovered is equal to the
target, the similarity value is 1, otherwise it decreases.

Fig. 14.4 Process models generated for the creation of the artificial dataset.

Four artificial processes have been created (see Chap.16). These processes, two
of them shown in Fig. 14.4, have been simulated 1000 times.

Model 1

Model 1 (Fig. 14.4(a)) contains 13 activities divided over 3 roles. A peculiarity of
this process is that the workflow starts with activities belonging to “Role 1” and
finishes with other activities belonging to the same “Role 1”. This processes have
been simulated to generate five different logs:

1. one with exactly one originator per role;
2. another with exactly two originators per role;

http://dx.doi.org/10.1007/978-3-319-17482-2_16

132 14 Extensions of Business Processes with Organizational Roles

3. the third log is similar to the second but is also includes a “jolly”: an originator
performing all activities;

4. the fourth log contains three originators; all of them are involved on all activities,
however, each role has a “leader”. Given a role, an activity is executed by its
leader with probability 0.5, otherwise all other originators are equally likely;

5. the last log has 6 originators performing all the activities with a leader for each
role (with the same probabilities of the previous case).

Model 2

Model 2 (Fig. 14.4(b)) is composed by 9 activities and 4 roles. In this case, the
process also has a loop of activities within “Role 3”. This process has been simulated
to generate 3 logs:

1. one with exactly one originator per role;
2. another with exactly two originators per role;
3. the last one with 8 originators, all of them involved in all the activities, with one

“leader” per role (with same probabilities of last logs of Model 1).

Model 3

Model 3 is composed of 17 activities distributed over 4 roles. This process combines
two characteristics of the previous examples: there is both a loop within the same
role and the flow comes back to roles already discovered. This process has been
simulated to generate three logs:

1. one with exactly one originator per role;
2. the second log has four originators, all of them are involved in all activities but

each role has one leader (same probabilities of previous cases);
3. the last log is characterized by 8 originators.

Model 4

Model 4 is composed of 21 activities distributed over 4 roles. In this last case, the
flow starts and finishes with activities belonging to the same roles (so there is a loop).
Moreover, this loop is located between activities of the two “externals” roles, so the
entire process (and therefore the roles) can be observed several times on the same
trace. This process has been simulated to generate three logs:

1. one with exactly one originator per role;
2. the second logs has four originators, plus one jolly, involved in all activities;
3. the last log is characterized by 8 originators.

14.4 Experiments 133

Fig. 14.5 These charts report the results, for the four models, in terms of number of significant
different partitions discovered.

Results

The first results are presented in Fig. 14.5. Specifically, for each log, the number
of different partitions is reported. Please note that this number is always relatively
small. The worst case is observed on the fourth model, on the log with a jolly. This
is what we actually expect: we have a very low number of originators (just 4) and
one jolly involved indiscriminately in all activities. Moreover, the structure of the
process allows having the same role appearing several times into the same trace.

Figure14.6 proposes, for the four models, the distribution of the partitions accord-
ing to the corresponding similaritymeasure (with respect to target roles). Concerning
the logs of Model 1, all the partitions present very high similarity values, most of
them concentrated on the interval [1, 0.5]. In the case of Model 2, most of partitions
lay on the interval [1, 0.7]. The last two models have a modestly wider distribution
of values; however, it is very important to note that in all cases the system extracts
the target set of roles (i.e. there is always a partition with similarity 1).

The last result is presented in Table 14.1, whose purpose is to evaluate the en-
tropy measure. Specifically, for each log, we ranked all partitions according to the
corresponding entropy measure. After that, we verified the position of the target

134 14 Extensions of Business Processes with Organizational Roles

Fig. 14.6 Results, for the four models, in terms of number of significant partitioning with respect
to the purity value, reported in bin of width 0.1.

partition. Results are reported in Table 14.1 and, as you can see, whenever there is
no “confusion” (i.e. one originator is involved in exactly one role), the entropy mea-
sure suggests the desired partition (i.e. the target partition is in first place). Instead,
when the same originator performs several roles, the confusion increases and it is
harder, for our entropy measure, to correctly identify the target partition (i.e. the
target partition is not in first place).

14.5 Other Approaches Dealing with Organizational
Perspective

The organizational perspective of process mining aims at the discovery of relations
among activity originators. Typically, those activities involve several approaches,
such as classification of users in roles and social network analysis.

In [143], Song and van der Aalst present an exhaustive characterization of or-
ganizational mining approaches. In particular, three different types of approaches
are presented: (a) organizational model mining; (b) social network analysis; and
(c) information flows between organizational entities.

14.5 Other Approaches Dealing with Organizational Perspective 135

Table 14.1 This table
reports, for each log, the rank
of the target partition.
Ranking is based on the
entropy value.

Logs Rank of target
partition

Model 1 1 originator per role 1

2 originators per role 1

2 originators per role – 1 jolly 4

3 originators with leader 4

6 originators with leader 12

Model 2 1 originator per role 1

2 originators per role 1

8 originators with leader 5

Model 3 1 originator per role 1

2 originators per role 1

4 originators with leader 19

Model 4 1 originator per role 1

2 originators per role 1

4 originators per role – 1 jolly 30

Organizational model mining consists in grouping users with similar characteris-
tics. This grouping operation can rely on the similarity of activities performed (task
based) or on working together on the same process instance (case based).

The basic idea of social network analysis [157] is to discover how the work is
handled between different originators. Several metrics are employed to point out dif-
ferent perspectives of the social network. Examples of such metrics are the handover
of work (when the work is started by a user and completed by another one), subcon-
tracting (when activities are performed by user a, then user b and then a again) and
working together (users involved in the same case).

The information collected in social networks can be aggregated in order to pro-
duce organizational entities (such as roles or organizational unit). These entities
are useful to provide insights at a higher abstraction level. Organizational entities
are constructed considering a metric, and the deriving social network and aggregat-
ing nodes. These new connections can be weighted according to the weights of the
originating network.

However, none of the above-mentioned works specifically addresses the problem
of discovering roles in business processes.

14.6 Summary

This chapter considered the problem of extending a business process model with
information about roles. Specifically, we showed that the discovery of a partitioning

136 14 Extensions of Business Processes with Organizational Roles

of activities. To achieve our goal, we took into account originators and activities
they perform. Measures of handover of roles are defined and employed. Finally,
we proposed an approach to automatically extract only the significant partitionings.
These set of possible roles can be ranked according to an entropy measure, so that
analyst may explore only first results.

With respect to the problems mentioned in Sect. 1.2, this chapter deals with prob-
lem P-02: exploiting as much available information as possible, during the actual
mining phase (see Sect. 8.3). Moreover, we solved the problem considering also
P-03: no user interaction is required, and therefore the approach is suitable also
for non-expert users. Another approach that exploits additional information was de-
scribed in Chap. 11.

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_11

Chapter 15
Results Interpretation and Evaluation

Process mining algorithms, designed for real world data, typically cope with noisy
or incomplete logs via techniques that force the analyst to set the value of several
parameters. Because of that, many process models corresponding to different para-
meters settings can be generated, and the analyst gets very easily lost in such a variety
of process models. In order to have really effective algorithms, it is of paramount
importance to give to the analyst the possibility to easily interpret the output of the
mining.

Chapter12 proposes a technique to automatically discretize the space of the values
of the parameters, and a technique for selecting onemodel among all the ones that can
be mined. However, presenting just a single output model could not be enough infor-
mative for the analyst (problems with the interpretation of the results, as mentioned

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_15

137

http://dx.doi.org/10.1007/978-3-319-17482-2_12

138 15 Results Interpretation and Evaluation

in Sect. 8.4); so, to solve the problemwe need to find a way of presenting only a small
set with the most meaningful results, so that the analyst can either point out the one
that better fits the actual business context, or extract general knowledge about the
business process from a set of relevant extracted models. In Sect. 1.2, this problem
is reported as P-04.

In order to pursue this objective, it is necessary to make possible the comparison
between process models, so to avoid that the analyst has to deal with too similar
processes. We propose a model-to-model metric that allows the comparison between
business processes, removing some of the problems which afflict other metrics al-
ready proposed in the literature. The proposed metric, in particular, transforms a
given model into two sets of relations among process activities. The comparison of
two models is then performed on the generated sets.

On the second part of this chapter we will propose a model-to-log metric, useful
for conformance checking. In particular, wewill compare a declarative processmodel
with respect to an event log. We are also able to provide both “local” and “global
healthiness” measure for the given process, which can be used by the analyst as input
for further investigations.

15.1 Comparing Processes

The selection of those perspectives that should be considered relevant for comparison
between twobusiness processes in not trivial. For example,we canhave twoprocesses
with the same structure (in terms of connections among activities) but different
activity names. In this case, it is easy, for a human analyst, to detect the underlying
similarity,while amachinewill hardly be able to capture this feature unless previously
programmed to do that. For this reason, several different comparison metrics have
been developed in the recent past, each one focusing on a different aspect of the
problem and related to a specific similarity measure.

In the context of business process mining, the first works that proposed a process
metric are [46, 154]. In those papers, process models are compared on the basis of
typical behaviors (expressed as an event log). The underpinning idea is that models
that differ on infrequent traces should be considered much more similar than models
that differ on very frequent traces. Of course, this requires the necessity of a reference
execution log. In [51], the authors address the problem of detection of synonyms and
homonyms that can occur when two business processes are compared. Specifically,
a syntactic similarity is computed by comparing the number of characters of the ac-
tivities names; linguistic similarity depends on a dictionary of terms, and structural
similarity is based on the hierarchical structure of an ontology. These three simi-
larities are combined in a weighted average. The work by Bae et al. [7] explicitly
refers to process mining as one of its purposes. The authors propose to represent a
process via its corresponding dependency graph, which in turn is converted into its
incidence matrix. The distance between two processes is then computed as the trace
of (N1 − N2) × (N1 − N2)

T , where N1 and N2 are the process incidence matrices.

http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_1

15.1 Comparing Processes 139

Authors of [174] present an approach for the comparison of models on the basis of
their “causal footprints”. A causal footprint can be seen as a collection of the es-
sential behavioral constraints that a process model imposes. The similarity between
processes is computed on the basis of their corresponding causal footprints, using
the cosine similarity. Moreover, in order to avoid synonyms, a semantic similarity
among function names is computed. The idea behind [48] is slightly different from
the abovementioned works as long as it tries to point out the differences between two
processes, so that a process analyst can understand them. Actually, this work is based
on [174]. The proposed technique exploits the notion of complete trace equivalence
in order to determine differences. The work byWang et al. [181] considers only Petri
nets. The basic idea is that the complete firing sequence of a Petri net might not be
finite, so it is not possible to compare Petri nets in these terms. That’s why the Petri
net is converted into the corresponding coverability tree (guaranteed to be finite) and
the comparison is performed on the principal transition sequences, created from the
corresponding coverability trees. The paper [186] describes a process in terms of its
“Transition Adjacency Relations” (TAR). The set of TARs describing a process is
the set of pairs of activities that occur one directly after the other. The TAR set of
a process is always finite, so the similarity measure is computed between the TAR
sets of the two processes. The similarity measure is defined as the ratio between
the cardinality of the intersection of the TARs and the cardinality of the union of
them. A recent work [182] proposes to measure the consistency between business
processes representing them as “behavioral profiles”, which are defined as the set of
strict order, exclusiveness and interleaving relations. The approach for the generation
of these sets is based on Petri nets (their firing sequences) and the consistency of
two processes is calculated as the amount of shared holding relations, according to a
correspondence relations, that maps transition of one process into transitions of the
other. Reference [93] describes a metric which takes into account five simple simi-
larity measures, based on behavioral profiles, as the previous case. These measures
are then compared using Jaccard coefficient.

15.1.1 Problem Statement and the General Approach

The first step of our approach [5] consists in converting a process model into another
formalism where we can easily define a similarity measure. We think that the idea of
[186], presented before, can be refined to better fit the case of business processes. In
that work, a process is represented by a set of TARs. Specifically, given a Petri net P ,
and its set of transitions T , a TAR 〈a, b〉 (where a, b ∈ T) exists if and only if there
is a trace σ = t1t2t3 . . . tn generated by P and ∃i ∈ {1, 2, . . . , n −1} such that ti = a
and ti+1 = b. For example, if we consider the two processes of Fig. 15.1, they have
the same TAR sets: all the possible traces generated by them always start with the
transition named “A” and end with “D”. In the middle, the process on the left hand
side has two AND branches with the transitions “B” and “C” (so the TAR set must
take into account all the possible combinations of their executions); the right hand

140 15 Results Interpretation and Evaluation

Fig. 15.1 Two processes
described as Petri nets that
generate the same TAR sets.
According to the work
described in [186], their
similarity would be 1, so
they would be considered
essentially as the same
process.

side process has two XOR branches, and they describe all the possible combinations
of the activities. Because of this peculiarity, the pairs of adjacent transitions that both
process models can generate are the same, so their similarity measure is 1 (i.e. they
describe the same process).

Themain problemwith this metric is that, even if from a “trace equivalence” point
of view, the two processes in Fig. 15.1 are the same (considering the two TAR sets),
from a more practical (i.e. business processes) point of view they are not: e.g., the
second process contains repeated activities and, more importantly, if activities “B”
and “C” last for a certain time period (i.e. they are not instantaneous), then it is not
the same to observe them in parallel or in (all the possible) sequences. Moreover,
there are many processes that will generate the same set of traces and a metric for
the comparison of processes should consider them as different.

Similarly to the above-mentioned works we also propose, at first, to convert a
process model from a representation hard to work with (such as Petri net or a Heuris-
tics Net), into another one easier to handle; then, the real comparison will be per-
formed on these new representations. However, in our case the model is transformed
into two sets of relations instead of one. In this way, the comparison is performed by
combining the results obtained by the comparison of the two sets individually.

15.1.2 Process Representation

As previously mentioned, we first have to convert the process into two sets: one set of
relations between activities that must occur, and another set of relations that cannot
occur. For example, consider the process in Fig. 15.2(a), where a representation of
the process as a Petri net is given. That is a simple process that contains a parallel
split in the middle. In Fig. 15.2(b), the same process is given but it is represented as
a dependency graph.

In order to better understand the representation of business processes we are
introducing, it is necessary to give the definition of workflow trace, i.e., the sequence
of activities that are executed when a business process is followed. For example,
considering again the process in Fig. 15.2, the set of all the possible traces that can
be observed is:

15.1 Comparing Processes 141

Fig. 15.2 An example of business process presented as a Petri net and as a dependency graph.

{ABC E F D, AB EC F D, AB E FC D, AE BC F D, AE B FC D, AE F BC D}.

We propose to represent these processes using two types of relations: a first set
containing those relations that must hold, the second set containing those relations
that cannot hold. Specifically, we consider relations (A > B and A ≯ B) which have
been already used by the Alpha algorithm (Sect. 5.1).

More formally, if a relation A > B holds, it means that, in some workflow traces
that the model can generate, activities A and B are adjacent: let W be the set of all
the possible traces of a model, then there exists at least one trace σ = t1 . . . tn ∈ W ,
where ti = A and ti+1 = B for some i ∈ {1, . . . , n − 1}.

The other relation, A ≯ B, is the negation of the previous one: if it holds, then,
for any σ = t1 . . . tn ∈ W , there is no i such that ti = A and ti+1 = B. It is important
to note that the relations above-shown describe only local behaviors (i.e., they do
not consider activities that occur far apart). Moreover, it must be noticed that our
definition of > is the same as the one used in [186].

These relations have been presented in [105, 162, 170] and are used by the Alpha
algorithm for calculating the possible causal dependency between two activities.
However, in the case considered by the cited papers, the idea is different: given a
workflow log W , the Alpha algorithm finds all the > relations and then, according
to some predefined rules, these relations are combined to get more useful derived
relations. The specific rules, mined starting from >, are:

1. A → B, iif A > B and B ≯ A;
2. A#B, iif A ≯ B and B ≯ A;
3. A‖B, iif A > B and B > A.

In this case, the relations > and ≯ will be called primitive relations, while →,
and ‖ will be called derived relations. The basic ideas underpinning these three
rules are:

1. if two activities are observed always adjacent and in the same order, then there
should be causal dependency between them (→);

2. if two activities are never seen as adjacent activities, it is possible that they are
not in any causal dependency (#);

3. if two activities are observed in no specific order, it is possible that they are in
parallel branches (‖).

Starting from these definitions, it is clear that, given two activities contained in a
log, at most one derived relation (→, # and ‖) can hold between them. In particular,

http://dx.doi.org/10.1007/978-3-319-17482-2_5

142 15 Results Interpretation and Evaluation

if these two activities appear adjacent in the log, then one of these relations holds;
otherwise, if they are far apart, none of the relations hold.

Our idea is to perform a “reverse engineering” of a process in order to discover
which relations must be observed in an ideal “complete log” (a log containing all the
possible behaviors) and which relations cannot be observed. The Alpha algorithm
describes how to mine a workflow log to extract sets of holding relations, which will
be then combined and converted into a Petri net. The reverse approach can be applied
too, although it is less intuitive. So, our idea is to convert a Petri net into two sets:
one with > and the other with ≯ relations.

To further understand our approach, it is useful to point out the main differences
with respect to the Alpha algorithm. Considering Fig. 15.3, filled lines represent what
the Alpha algorithm does: starting from the log (i.e. the set of traces), it extracts the
primitive relations which are then converted into derived relations and finally into a
Petri net model. In our approach, that procedure is reversed and is represented with
dotted lines: starting from a given model (Petri net or dependency graph, or any other
process model), the derived relations are extracted and then converted into primitive
ones; the comparison between business process models is actually performed at this
level.

Fig. 15.3 Representation of the space where the comparison between processes is performed. The
filled lines represent the steps that are performed by the Alpha algorithm. The dotted lines represent
the conversion of the process into sets of primitive relations, as presented in this work.

Note that, since the naive comparison of trace equivalence is not feasible (in case
of loops, the generation of the trace could never stop), we decided to analyze a model
(e.g. a Petri net or a Heuristics net) and see which relations can possibly be derived.
Given the set of derived relations for a model, these will be converted into two sets
of positive and negative relations.

The main difference with other approaches in the literature (e.g., [182, 186]), is
that our approach can be applied on every modeling language and not only Petri net
or Workflow net. This is why our approach cannot rely on Petri net specific notions

15.1 Comparing Processes 143

(such as firing sequence).We prefer to just analyze the structure of the process from a
“topological” point of view. In order to face this challenge, we decided to consider a
process in terms of composition of well known patterns. Right now, a small but very
expressive set of “workflow patterns” [133] are taken into account. These patterns
are the ones presented in Fig. 15.4.

When a model is analyzed, these derived relations are extracted:

• a sequence of two activities A and B (Fig. 15.4(a)), will generate a relation A → B;
• every time an XOR split is observed (Fig. 15.4(d)) and activities A, B and C are
involved, the following rules can be extracted: A → B, A → C and B#C ; a
similar approach can handle the XOR join (Fig. 15.4(e)), generating a similar set
of relations: D → F , E → F , D#E ;

• every time an AND split is observed and activities A, B and C are involved
(Fig. 15.4(b)) the following rules can be extracted: A → B, A → C and B‖C ; a
similar approach can handle the AND join (Fig. 15.4(c)), generating a similar set
of relations: D → F , E → F , D‖E .

For the case of dependency graphs, this approach is formalized in Algorithm 6:
the basic idea is that, given two activities A and B, directly connected with an edge,
the relation A → B must hold. If A has more than one outgoing or incoming edges
(C1, . . . , Cn) then the following relations will also hold: C1ρC2, . . . , C1ρCn, . . . ,

Cn−1ρCn (where ρ is ‘#’ if A is a XOR split/join, ‘‖’ if A is an AND split/join).
Once the algorithm has completed the generation of the set of holding relations,

this set can be split in two sets of positive and negative relations, according to the
“derived relations” previously presented. Just to recap, we have A → B generates
A > B and B ≯ A; A#B generates A ≯ B and B ≯ B; and, finally, A‖B generates
A > B and B > A.

Let’s consider again the process P of Fig. 15.2. After the execution of the three
“foreaches”, in Algorithm 6 (so before the return of the last line), R will contain
all the derived relations that, in the considered example, are:

A → B A → E B → C E → F C → D F → D B‖E C‖F

These will be converted during the return operation of the algorithm into these
two sets:

R+(P) = {A > B, A > E, B > C, E > F, C > D, F >D, B > E,

E > B, C > F, F > C}

R−(P) = {B ≯ A, E ≯ A, C ≯ B, F ≯ E, D ≯ C, D ≯ F}

It is important to maintain these two sets separated because of the metric we are
going to introduce on the following section.

144 15 Results Interpretation and Evaluation

Fig. 15.4 The basic workflow patterns that are managed by the algorithm for the conversion of
a process model into set of relations. The patterns are named with the same codes of [133]. It is
important to note that in WCP-2,3,4,5 any number of branches is possible, although this picture
presents only the particular case of 2 branches. Moreover, the loop is not reported here because it
can be expressed in terms of XOR-split/join (WCP-4,5).

15.1.3 A Metric for Processes Comparison

Converting a process model into another representation is useful to compare two
processes in a more easy and effective way. Here we propose a procedure to use the
previously defined representations to obtain a principled metric. Specifically, given
two processes P1 and P2, expressed in terms of positive and negative constraints:
P1 = (R+, R−) and P2 = (R+, R−) they are compared according to the amount
of shared “required” and “prohibited” behaviors. A possible way to compare these
values is the Jaccard similarity J and the corresponding distance Jδ , that is defined
in [126], between two sets, as:

J (A, B) = |A ∩ B|
|A ∪ B| Jδ(A, B) = 1 − J (A, B) = |A ∪ B| − |A ∩ B|

|A ∪ B|
For example, it is proven that Jaccard is actually a distance measure over sets (so it is
not-negative, symmetric and satisfies the identity of indiscernibles and the triangle
inequality).

Our newmetric is built considering the convex combination of the Jaccard distance
for the set of positive and negative relations of two processes:

d(P1, P2) = α Jδ

(
R+(P1), R+(P2)

) + (1 − α)Jδ

(
R−(P1), R−(P2)

)

where 0 ≤ α ≤ 1 is a weighting factor that allows the user to calibrate the importance
of the positive and negative relations. Since this metric is defined as a linear combi-
nation of distances (Jδ), it is a distance itself. It is important that the given measure is

15.1 Comparing Processes 145

Algorithm 6. Conversion of a dependency graph into sets of relations.
Input: G = (V, E): process as a dependency graph

T : V → {XOR split, XOR join, AND split, AND join}
1 R: set of holding relations
2 foreach (v1, v2) ∈ E do
3 R = R ∪ {v1 → v2}
4 end

5 foreach v ∈ V, X = {u ∈ V | (v, u) ∈ E} do
6 foreach (u1, u2) ∈ X × X such that u1 �= u2 do
7 if T (v) is XOR split then
8 R = R ∪ {u1#u2}
9 else if T (v) is AND split then

10 R = R ∪ {u1‖u2}
11 end
12 end
13 end

14 foreach v ∈ V, X = {u ∈ V | (u, v) ∈ E} do
15 foreach (u1, u2) ∈ X × X such that u1 �= u2 do
16 if T (v) is XOR join then
17 R = R ∪ {u1#u2}
18 else if T (v) is AND join then
19 R = R ∪ {u1‖u2}
20 end
21 end
22 end

23 return convertRelations(R)

actually a metric, because the final aim of this approach is doing clustering on those
business processes.

It is important to note that there are couples of relations that are not “allowed” at
the same time, otherwise the process is ill-defined and shows problematic behaviors,
e.g. deadlocks1. Incompatible couples are defined as follows:

• if A → B holds then A‖B, B‖A, A#B, B#A, B → A are not allowed;
• if A‖B holds then A#B, B#A, A → B, B → A, B‖A are not allowed;
• if A#B holds then A‖B, B‖A, A → B, B → A, B#A are not allowed.

Similarly, considering primitive relations, if A > B holds then A ≯ B represents an
inconsistency, so that this behavior should not be allowed.

Theorem 15.1. Two processes, composed of different patterns, that do not contain
duplicated activities and that do not have contradictions into their set of relations
(either derived or primitive), have distance measure greater than 0.

1It must be stressed that a process may be ill-defined even if no such couples of relations are present
at the same time.

146 15 Results Interpretation and Evaluation

Proof. Since the distance measure is calculated on the basis of the two sets of prim-
itive relations, two processes P1 = (R+

P1
, R−

P1
) and P2 = (R+

P2
, R−

P2
) have a distance

measure d(P1, P2) > 0 iff the sets R+
P1
, R+

P2
and R−

P1
, R−

P2
are not pairwise equal.

The two sets R+ and R− are generated starting from the derived relations, and these
are created starting from the patterns observed. If we assume that two processes are
made of different patterns, they will generate different sets of derived relations and
thus different sets of primitive relations. This is going to generate a distancemeasure,
for the two processes that is greater than 0.

Since the sets of relations are generated without looking at the set of traces, but just
starting from the local structure of the process model, if it is not sound (considering
the Petri net notion of soundness [145]) it is possible to observe “contradictions”.

There is another important aspect that needs to be pointed out: in the case of
contradictions, there may be an unexpected behavior of the proposed metric. For
example, in Fig. 15.5, the two processes are “structurally different”, but have distance
measure equals to 0. This is due to the contradictions contained in the set of primitive
relations that are generated, because of the contradictions on the derived relations
(in both processes B‖C and B#C hold at the same time). More generally, we have
that two different processes have distance measure equals to 0 when their differences
results in contradictions.

Fig. 15.5 Two processes that are different and contain contradictions in their corresponding set of
relations: they have distance measure equals to 0.

Consider the three processes of Fig. 15.1(a), (b) and 15.2. Table15.1 shows the
values of the TAR metric [186], compared with the ones of the metric proposed in
this work, with different values of its parameter α. Note that, when α = 1 then only
the positive relations are considered; when α = 0, only negative relations are taken
into account; and, when α = 0.5, the two cases are equally balanced. Moreover, in
the situation presented here, the TARmetric and the metric of this work (with α = 1)
are equal but, generally, they are not (when there is some concurrent behavior, TAR
metric adds relations with all the other activities in the other branches, whereas our
metric adds only local relations with the first activities of the branches).

This procedure has been implemented and tested as discussed in Chap.13.

Table 15.1 Values of the metrics comparing three process models presented in this work. The
metric proposed here is presented with 3 values of its α parameter.

Figure 15.1(a)–(b) Figures 15.1(a)–15.2 Figures 15.1(b)–15.2

TAR set [186] 0 0.82 0.82

Our metric, α = 1 0 0.77 0.77

Our metric, α = 0.5 0.165 0.76 0.71

Our metric, α = 0 0.33 0.75 0.66

http://dx.doi.org/10.1007/978-3-319-17482-2_13

15.2 A-Posteriori Analysis of Declarative Processes 147

15.2 A-Posteriori Analysis of Declarative Processes

The metric proposed in the previous section is a model-to-model metric: it aims at
comparing two process models. However, for conformance checking and evalua-
tion, we may need to analyze whether the observed behavior matches the modeled
behavior. In such settings, it is often desirable to specify the expected behavior in
terms of a declarative process model rather than of a detailed procedural one. Un-
fortunately, declarative models do not have an explicit notion of state, thus making
it more difficult to pinpoint deviations and to explain and quantify discrepancies.

This section focuses on providing high-quality and understandable diagnostics
measures [22]. The notion of activation plays a key role in determining the effect
of individual events on a given constraint. Using this notion, we are able to show
cause-and-effect relations and to measure the healthiness of a process.

15.2.1 Declare

Declarative languages can be fruitfully applied in the context of process discovery
[34, 98, 101] and compliance checking [9, 47, 90, 100]. In [156], the authors intro-
duce an LTL-based declarative process modeling language called Declare. Declare
is characterized by a user-friendly graphical representation with formal semantics
grounded in Linear Temporal Logic (LTL). A Declare model is a set of Declare
constraints, which are defined as instantiations of Declare templates. Templates are
abstract entities that define parameterized classes of properties.

Declare is grounded in LTL [124] with a finite-trace semantics. For instance, a
constraint like the response constraint in Fig. 2.7 can be formally represented using
LTL and, in particular, it can be written as �(C ⇒ ♦S), that means “whenever
activity Create Questionnaire is executed, eventually activity Send Questionnaire is
executed”. In a formula like this, it is possible to find traditional logical operators
(e.g., implication⇒), but also temporal operators characteristic of LTL (e.g., always
� and eventually ♦). In general, using the LTL language makes possible to express
constraints relating activities (atoms) through logical operators or temporal operators.

The logical operators are: implication (⇒), conjunction (∧), disjunction (∨) and
negation (¬). The main temporal operators are: always (�p, in every future state p
holds), eventually (♦p, in some future state p holds), next (©p, in the next state p
holds) and until (p � q, p holds until q holds).

LTLconstraints are not very readable for non-experts. Therefore,Declare provides
an intuitive graphical front-end for LTL formulas. The LTL back-end of Declare
allows us to verify Declare constraints and Declare models, i.e., sets of Declare
constraints. Table15.2 presents some Declare relations, with the corresponding LTL
constraints and the graphical representation of the Declare language.

For instance, a Declare constraint can be verified on a log by translating its
LTL semantics into a finite state automaton [63] that we call constraint automaton.

http://dx.doi.org/10.1007/978-3-319-17482-2_2

148 15 Results Interpretation and Evaluation

Table 15.2 Semantics of Declare constraints, with the graphical representation.

Figure15.6 depicts the constraint automata for the response constraint, the alternate
response constraint and the not co-existence constraint. In all three cases, state 0 is
the initial state and accepting states are indicated using a double outline. A transition
is labeled with the activity triggering it. As well as positive labels, we also have nega-
tive labels (e.g., ¬L for state 0 of the not co-existence constraint). This indicates that
we can follow the transition for any event not mentioned (e.g., we can execute event
C from state 0 of the not co-existence automaton and remain in the same state). This
allows us to use the same automaton regardless of the input language. A constraint
automaton accepts a trace (i.e., the LTL formula holds) if and only if there exists a
corresponding path that starts in the initial state and ends in an accepting state.

15.2.2 An Approach for A-Posteriori Analysis

When analyzing the conformance of a process with respect to a set of constraints,
it is important to note that constraints can be vacuously satisfied. Considering again
the example of Fig. 2.7, if Create Questionnaire never occurs, then the response
constraint holds trivially. This is commonly referred to as vacuous satisfaction. In
this context, we will start from the existing notion of vacuity detection [10] and

http://dx.doi.org/10.1007/978-3-319-17482-2_2

15.2 A-Posteriori Analysis of Declarative Processes 149

Fig. 15.6 Automata for the response, alternate response and not co-existence constraints in our
running example.

we will propose an approach for evaluating the “degree of adherence” of a process
trace with respect to a Declare model. In particular, we will introduce the notion of
healthiness of a trace that is, in turn, based on the concept of activation of a Declare
constraint.

Vacuity Detection in Declare

In [101], the authors introduce for the first time the concept of vacuity detection for
Declare constraints. As just stated, consider, for instance, the response constraint in
Fig. 2.7. This constraint is satisfiedwhen a questionnaire is created and is (eventually)
sent. However, this constraint is also satisfied in cases where the questionnaire is not
created at all. In this latter case, we say that the constraint is vacuously satisfied.
Cases where a constraint is not-vacuously satisfied are called interesting witnesses
for that constraint.

Authors of [94] introduce an approach for vacuity detection in temporal model
checking for LTL; they provide a method for extending an LTL formula ϕ to a
new formula wi tness(ϕ) that, when satisfied, ensures that the original formula ϕ is
not-vacuously satisfied. In particular, wi tness(ϕ) is generated by considering that
a path π satisfies ϕ not-vacuously (and then is an interesting witness for ϕ), if π

satisfies ϕ and π satisfies a set of additional conditions, that guarantee that every
subformula of ϕ does really affect the truth value of ϕ in π . We call these conditions
vacuity detection conditions of ϕ. They correspond to the formulas ¬ϕ[ψ ← ⊥],
where, for all the subformulas ψ of ϕ, ϕ[ψ ← ⊥] is obtained from ϕ by replacing
ψ by false or true, depending on whether ψ is in the scope of an even or an odd

http://dx.doi.org/10.1007/978-3-319-17482-2_2

150 15 Results Interpretation and Evaluation

number of negations. Then, wi tness(ϕ) is the conjunction of ϕ and all the formulas
¬ϕ[ψ ← ⊥] with ψ subformula of ϕ:

witness(ϕ) = ϕ ∧
∧

¬ϕ[ψ ← ⊥]. (15.1)

In compliance models, LTL-based declarative languages, like Declare, are used to
describe requirements to the process behavior. In this kind of models, each LTL rule
describes a specific constraint with clear semantics. Therefore, we need a univocal
(i.e., not sensitive to syntax) and intuitive way to diagnose vacuously compliant
behavior in an LTL-based process model. Furthermore, interesting witnesses for a
Declare constraint could show very different behaviors. Consider, for instance, the
response constraint �(C ⇒ ♦S) and traces p1 and p2:

p1 = 〈C, S, C, S, C, S, C, S, R〉 p2 = 〈H, M, C, S, H, M, R〉.

Both p1 and p2 are interestingwitnesses for�(C ⇒ ♦S) (in both traces�(C ⇒ ♦S)

is valid and the vacuity detection condition ♦C is also valid). However, it is intuitive
to understand that in p1 this constraint is activated four times (because C occurs four
times), whereas in p2 it is activated only once. To solve these issues, we introduce
the notion of constraint activation.

Roughly speaking, an activation for a constraint is an event that constrains in some
way the behavior of other events and imposes some obligations on them. For instance,
the occurrence of an event can require the occurrence of another event afterwards
(e.g., in the response constraint) or beforehand (e.g., in the precedence constraint).
When an activation occurs, these obligations can refer to the future, to the past or to
both. Moreover, they can require or forbid the execution of other events.

Definition 15.1 (Subtrace). Let σ be a trace. A trace σ ′ is a subtrace of σ (σ ′ � σ)
if σ ′ can be obtained from σ by removing one or more events.

Definition 15.2 (Minimal Violating Trace). Let π be a Declare constraint andAπ

the constraint automaton of π . A trace σ is a minimal violating trace for Aπ if it is
not accepted by Aπ and if every subtrace of σ is accepted by Aπ .

Definition 15.3 (Constraint Activation). Let π be a Declare constraint andAπ the
constraint automaton of π . Each event included in a minimal violating trace for Aπ

is an activation of π .

Consider, for instance, the automaton in Fig. 15.6(a). In this case, the minimal vi-
olating trace is 〈C〉. Therefore, the response constraint in our running example is
activated by C . Moreover, for the automaton in Fig. 15.6(b), the minimal violating
trace is 〈H〉 and, then, the alternate response constraint is activated by H . Finally,
for the automaton in Fig. 15.6(c), the minimal violating sequences are 〈L , H〉 and
〈H, L〉. The not co-existence constraint is, therefore, activated by both H and L .

In Table15.3, we indicate events that represent an activation for each Declare
constraint. Note that events that represent an activation for a constraint are marked

15.2 A-Posteriori Analysis of Declarative Processes 151

Table 15.3 Activations of
Declarative constraints.

Declare constraint Activation events

Relation Templates

responded existence(A, B) A

co-existence(A, B) A, B

response(A, B) A

precedence(A, B) B

succession(A, B) A, B

alternate response(A, B) A

alternate precedence(A, B) B

alternate succession(A, B) A, B

chain response(A, B) A

chain precedence(A, B) B

chain succession(A, B) A, B

Negative Relation Templates

not co-existence(A, B) A, B

not succession(A, B) A, B

not chain succession(A, B) A, B

with a black dot in the graphical notation ofDeclare, e.g., both A and B are activations
for the succession constraint (as visualized by the black dots).

15.2.3 An Algorithm to Discriminate Fulfillments
from Violations

When a trace is compliant with respect to a constraint, every activation of that con-
straint leads to a fulfillment. For instance, recall the two traces:

p1 = 〈C, S, C, S, C, S, C, S, R〉 p2 = 〈H, M, C, S, H, M, R〉.

in p1, the response constraint (�(C ⇒ ♦S)) is activated and fulfilled four times,
whereas in p2, the same constraint is activated and fulfilled once. Notice that, when
a trace is not-compliant with respect to a constraint, an activation of a constraint can
lead to a fulfillment but also to a violation (and at least one activation leads to a
violation). Consider, again, the response constraint in our running example and the
trace p3 = 〈C, S, C, R〉. In this trace, the response constraint is violated. However, it
is still possible to quantify the degree of adherence of this trace in terms of number of
fulfillments and violations. Indeed, in this case, the response constraint is activated
twice, but one activation leads to a fulfillment (eventually an event S occurs) and
the other activation leads to a violation (S does not occur eventually). Therefore, we

152 15 Results Interpretation and Evaluation

need a mechanism to point out that the first occurrence of C is a fulfillment and the
second one is a violation.

Furthermore, if we consider trace 〈H, H, M〉 and the alternate response constraint
in our running example, we observe that the two occurrences of H cannot co-exist,
but it is impossible to understand (without further information from the user) which
one is a violation and which one is a fulfillment. In this case, we say that we have a
conflict between the two activations.

Algorithm 7. Procedure to build the activation tree
Input: σ : trace; π : constraint
Result: activation tree of σ with respect to π

1 Let T be a binary tree with root labeled with an empty subtrace
2 forall the e ∈ σ (explored in sequence) do
3 forall the leaf l of T do
4 if the subtrace associated to l is not dead then
5 if e is an activation for π then
6 l[le f t] = new node, subtrace of l
7 l[right] = new node, subtrace of l + e
8 else
9 subtrace of l = subtrace of l + e

10 end
11 end
12 end
13 end
14 return T

In order to identify fulfillments, violations and conflicts for a constraint π in a
trace σ , we present Algorithm 7 that is based on the construction of a so-called
activation tree of σ with respect to π , where every node is labeled with a subtrace
of σ . The algorithm starts from a root labeled with the empty subtrace. Then, σ is
replayed and the tree is finally built in the following way:

• if the current event in σ is an activation of π , two children are appended to each
leaf-node: a left child labeled with the subtrace of the parent node and a right child
labeled with the same subtrace augmented with the current activation;

• if the current event in σ is not an activation of π , all leaf-nodes are augmented
with the current event.

At each iteration, each subtrace in the leaf-nodes is executed on the constraint automa-
tonAπ . A node is called dead if the corresponding subtrace is not possible according
to the automaton or all events have been explored and no accepting state has been
reached. Dead nodes are not explored further and crossed-out in the diagrams. At
the end of the algorithm, fulfillments, violations and conflicts can be identified by
selecting, among the (not-dead) leaf-nodes, the maximal fulfilling subtraces.

15.2 A-Posteriori Analysis of Declarative Processes 153

Definition 15.4 (Maximal Subtrace). Given a set Σ of subtraces of a trace σ , a
maximal subtrace of σ in Σ is an element σ ′ ∈ Σ such that �σ ′′ ∈ Σ with σ ′ � σ ′′.

Definition 15.5 (Maximal Fulfilling Subtrace). Given a trace σ and a constraint
π , let Σ be the set of the subtraces of σ associated to the not-dead leaf-nodes of
the activation tree of σ with respect to π . Let M ⊆ Σ be the set of the maximal
subtraces of σ in Σ . An element of M is called maximal fulfilling subtrace of σ with
respect to π .

Let’s consider an activation a of π in σ , and all its maximal fulfilling subtraces. Then
a is:

• fulfillment, if it is included in all the maximal fulfilling subtraces;
• violation, if it is not included in any maximal fulfilling subtrace;
• conflict, if it is only included in some maximal fulfilling subtraces.

Fig. 15.7 Activation tree of
trace

〈
C(1), S, C(2), R

〉
with

respect to the response
constraint in our running
example: dead nodes are
crossed out and nodes
corresponding to maximal
fulfilling subtraces are
highlighted

Consider, for instance, the activation tree in Fig. 15.7 of the trace:

〈
C(1), S, C(2), R

〉

with respect to the response constraint in our running example (reported in Fig. 2.7).
The maximal fulfilling subtrace is

〈
C(1), S, R

〉
. We can conclude that C(1) is a fulfill-

ment, whereas C(2) is a violation.
Figure15.8 depicts the activation tree of trace

〈
H(1), M, H(2), H(3), M

〉

with respect to thealternate response constraint in our running example.Themaximal
fulfilling subtraces are, in this case,

〈
H(1), M, H(2), M

〉
and

〈
H(1), M, H(3), M

〉
. We

can conclude that H(1) is a fulfillment, whereas H(2) and H(3) are conflicts.
Finally, Fig. 15.9 depicts the activation tree of trace

〈
H, M, L(1), L(2)

〉

http://dx.doi.org/10.1007/978-3-319-17482-2_2

154 15 Results Interpretation and Evaluation

Fig. 15.8 Activation tree of trace
〈
H(1), M, H(2), H(3), M

〉
with respect to the alternate response

constraint in our running example

Fig. 15.9 Activation tree of trace
〈
H, M, L(1), L(2)

〉
with respect to the not co-existence constraint

in our example.

with respect to the not co-existence constraint in our running example. The maximal
fulfilling subtraces are, in this case, 〈H, M〉 and 〈

M, L(1), L(2)
〉
. We can conclude

that H , L(1) and L(2) are conflicts.

15.2.4 Healthiness Measures

In this section we will provide a definition of the healthiness of a trace with respect
to a given constraint. Given a trace σ and constraint π , each event in the trace can
be classified as activation or not based on Definition 15.3. na(σ, π) is the number of
activations of σ with respect to π . Each activation can be classified as a fulfillment, a
violation, or a conflict based on the activation tree. n f (σ, π), nv(σ, π) and nc(σ, π)

denote the numbers of fulfillments, violations and conflicts of σ with respect to π ,
respectively. n(σ) is the number of events in σ .

15.2 A-Posteriori Analysis of Declarative Processes 155

Healthiness

The healthiness of a trace σ with respect to a constraint π is a quadruple Hπ (σ) =
(ASπ (σ), F Rπ (σ), V Rπ (σ), C Rπ (σ)), where:

1. ASπ (σ) = 1 − na(σ,π)
n(σ)

is the activation sparsity of σ with respect to π ,

2. FRπ (σ) = n f (σ,π)

na(σ,π)
is the fulfillment ratio of σ with respect to π ,

3. VRπ (σ) = nv(σ,π)
na(σ,π)

is the violation ratio of σ with respect to π and

4. CRπ (σ) = nc(σ,π)
na(σ,π)

is the conflict ratio of σ with respect to π .

A trace σ is “healthy”with respect to a constraintπ if the fulfillment ratio F Rπ(σ)

is high, and both the violation ratio V Rπ (σ) and the conflict ratioC Rπ (σ) are low. If
F Rπ (σ) is high, the activation sparsity ASπ (σ) becomes a positive factor, otherwise
it is symptom of unhealthiness.

It is possible to average the values of the healthiness over the traces in a log
and over the constraints in a Declare model, thus obtaining aggregated views of the
healthiness of a trace with respect to a Declare model, of a log with respect to a
constraint and of a log with respect to a Declare model.

Likelihood of a Conflict Resolution

Consider trace 〈H, M, L(1), L(2)〉 with respect to the not co-existence constraint in
our running example. The maximal fulfilling subtraces are, in this case, 〈H, M〉 and
〈M, L(1), L(2)〉 and H , L(1) and L(2) are conflicts. However, the maximal fulfilling
subtraces also contain further information. In fact, H is included in one of the max-
imal fulfilling subtraces and L(1) and L(2) in the other one. This means that L(1)
and L(2) can co-exist but both cannot co-exist with H . In this way, we can conclude
that either H is a violation and L(1) and L(2) are fulfillments or, vice versa, H is
a fulfillment and L(1) and L(2) are violations. We call the corresponding maximal
fulfilling subtraces conflict resolutions.

The user can decide how to solve a conflict by selecting a conflict resolution.
However, it is possible to provide the user with two health indicators, as support for
this decision: the local likelihood of a conflict resolution and the global likelihood
of a conflict resolution.

Definition 15.6 (Local Likelihood). Let σ ′ be a conflict resolution of a trace σ with
respect to a constraint π . Let na(σ ′, π) and n f (σ

′, π) be the number of activations
and fulfillments of a conflict resolution σ ′, respectively. The local likelihood of σ ′
is defined as:

LL(σ ′) = n f (σ
′, π)

na(σ ′, π)
.

Note that local likelihood of a conflict resolution is a number in the interval (0, 1).
If we consider again the example described before, we have that L L(〈H, M〉) = 1

3

156 15 Results Interpretation and Evaluation

and L L(〈M, L(1), L(2)〉) = 2
3 . This means that, more likely, H is a violation and

L(1) and L(2) are fulfillments.
In the following definition a Declare model is a pair D = (A,Π), where A is a

set of activities and Π is a set of Declare constraints defined over activities in A.

Definition 15.7 (Global Likelihood). Let D = (A,Π) be a Declare model. Let σ ′
be a conflict resolution of a trace σ with respect to a constraint π ∈ Π . Let K be
the set of the conflicting activations in σ . For each conflicting activation a ∈ K , let
γ (a) be the percentage of constraints in Π where a is a fulfillment, if a is resolved
as a fulfillment in σ ′, or where a is a violation, if a is resolved as a violation in σ ′.
The global likelihood of σ ′ is defined as:

GL(σ ′) =
∑

a γ (a)

|K | .

The global likelihood of a conflict resolution is a number between 0 and 1.
If we continue with the same example, we have that GL(〈H, M〉) = 1

6 and
L L(〈M, L(1), L(2)〉) = 0. This means that, from the global point of view, more
likely, H is a fulfillment and L(1) and L(2) are violations.

15.2.5 Experiments

For the a-posteriori analysis of a log with respect to a Declare model, we have
implemented the Declare Analyzer, a plug-in of the process mining tool ProM. The
plug-in takes as input a Declare model and a log, it provides detailed diagnostics,
and quantifies the health of each trace (and of the whole log).

We evaluate the performance of our approach using both synthetic and real-life
logs. Then, we validate our approach on a real case study in the context of the
CoSeLoG project2 involving 10 Dutch municipalities.

15.2.5.1 Scalability

In order to experimentally demonstrate the scalability of our approach, we have per-
formed two experiments. Both these experiments have been performed on a standard
laptop, with a dual-core processor with its power forced to 1.6GHz. The presented
results report the average value of the execution time over 5 runs.

In thefirst experiment,weverified the scalability of the techniquewhenvarying the
log size. For this experiment, we have generated a set of synthetic logs by modeling
the process described as running example inCPNTools3 and by simulating themodel.

2Visit http://www.win.tue.nl/coselog for more information.
3The tool is freely available at http://www.cpntools.org.

http://www.win.tue.nl/coselog
http://www.cpntools.org

15.2 A-Posteriori Analysis of Declarative Processes 157

Fig. 15.10 Execution time for varying log and trace sizes and the polynomial regression curve
associated.

In particular, we used randomly generated logs including 250, 500, 750 and 1000
traces. The results are presented in Fig. 15.10(a). The plot shows that the execution
time grows polynomially with the size of the logs.

In the second experiment, we evaluate the trend of the execution time with respect
to the length of the traces. For this experiment,wehave selected, in theCoSeLoG logs,
6 sets of traces, each composed of 10 traces of the same length. Figure15.10(b) shows
the results of this experiment. Even if the size of an activation tree is exponential
in the number of activations, the execution time is polynomial in the length of the
traces. Indeed, performances get worse when the number of activations is close to
the number of events in a trace. However, from our experience, in practice, this case
is, in general, unlikely. Specifically, the activation sparsity is in most cases high (see
Table15.4) and, therefore, the number of activations is lowwith respect to the number
of events in a trace. This means that, from the practical point of view, the algorithm
is applicable. For example, as shown in Fig. 15.10(b), processing 10 traces with 63
events requires slightly more than 1s.

In addition, in our implementation we never needed to construct the whole ac-
tivation tree of a trace. This also influences the performances of the approach. At
each step of the algorithm, we keep track only of the maximal traces without build-
ing the nodes corresponding to their sub-traces. These sub-traces are identified (and
evaluated) only when the original maximal trace is violated (and pruned away).

15.2.5.2 Case Study

We have validated our approach by performing various experiments using real-life
event logs from the CoSeLoG project. Here, we show results for the process of han-
dling permissions for building or renovating private houses, for which we have logs
from several Dutchmunicipalities. For the validation reported here, we have used two
logs of processes enacted by two different municipalities. We first have discovered

158 15 Results Interpretation and Evaluation

Fig. 15.11 Model
discovered from an event log
of a Dutch Municipality. For
clarifying, we provide the
English translation of the
Dutch activity names.
Administratie, Toetsing,
Beslissing, Verzenden
beschikking and Rapportage
can be translated with
Administration, Verification,
Judgement, Sending
Outcomes and Reporting,
respectively.

Table 15.4 Results of the analysis approach, applied to real-life event logs from the CoSeLoG
project. The table reports average activity sparsity, average violation ratio, average fulfillment ratio
and average conflicts ratio.

Constraint A
vg

.a
ct

.
sp
ar

si
ty

A
vg

.v
io

la
t.

ra
ti

o

A
vg

.f
ul

fil
.

ra
ti

o

A
vg

.c
on

fli
.

ra
ti

o
precedence(Rapportage,Beslissing) 0.859 0.017 0.982 0
succession(Administratie,Beslissing) 0.735 0.995 0.004 0
precedence(Rapportage,Verzenden) 0.976 0.054 0.945 0
not succession(Verzenden,Rapportage) 0.731 0.000 0.999 0
response(Toetsing,Beslissing) 0.979 0.713 0.286 0
precedence(Beslissing,Verzenden) 0.976 0.164 0.835 0
not succession(Verzenden,Beslissing) 0.836 0 1 0
not succession(Beslissing,Rapportage) 0.614 0.000 0.995 0.004
precedence(Beslissing,Administratie) 0.875 0.261 0.738 0

Averages 0.842 0.245 0.754 0.000

a Declare model using an event log of one municipality using the Declare Miner.
This model is shown in Fig. 15.11. Then, using the Declare Analyzer, we have an-
alyzed the degree of adherence of a log of the second municipality with respect to
the mined model. Analysis showed commonalities and interesting differences. From
a performance viewpoint the results were also encouraging: 481 cases with 17032
events could be replayed in 15s.

Results are reported in Table15.4. The fulfillment ratio is, for almost all con-
straints, very high and, therefore, the average fulfillment ratio over the entire Declare
model is also high (0.754). The activation sparsity of the log is, in most cases, close
to 1, indicating a low activation frequency for each constraint in the model. For the
not succession constraint between Beslissing and Rapportage, the combination of

15.2 A-Posteriori Analysis of Declarative Processes 159

Fig. 15.12 Screenshot with the distance matrix and the dendrogram applied to some processes.

Fig. 15.13 Screenshot of the exploration procedure that allows the user to choose the most inter-
esting process.

an under average activation sparsity with a high fulfillment ratio reveals the “good
healthiness” of the log with respect to that constraint.

Nevertheless, the twomunicipalities execute the two processes in a slightly differ-
ent manner (the average violation ratio and the conflict ratio of the log with respect to
the entire Declare model are 0.245 and 0.0005 respectively). The discrepancies have
mainly been detected for the succession constraint and for the response constraint in
the reference model. Here, the violation ratio is high. For the succession constraint

160 15 Results Interpretation and Evaluation

Fig. 15.14 On the left hand side there is the output of the log view Declare Analyzer plug-in. On
the right hand side the trace view details is proposed.

15.4 Summary 161

the high violation ratio in combination with a low activation sparsity is symptom of
strong unhealthiness.

15.3 Implementations

The model-to-model metric, presented in Sect. 15.1, has been implemented in the
standalone application PLG (that will be presented in Sect. 16.2). In this case, as can
be seen in Fig. 15.12, it is possible to create a graphical representation of the distance
matrix between couples of processes. Figure15.13 shows the procedure that allows
the analyst to navigate the process clusters in order to find the most interesting
process.

Concerning the a-posteriori analysis of a log with respect to a Declare model, de-
scribed in Sect. 15.2, we have implemented the Declare Analyzer ProM plugin. This
plugin takes as input a Declare model and a log and it provides detailed diagnostics,
quantifying the health of each trace (and of the whole log). Figure15.14 presets a
couple of screenshots of this plugin, in particular, the log overview metrics and trace
view details are proposed.

15.4 Summary

In this chapter we presented two approaches for the evaluation of process models.
In particular a model-to-model and a model-to-log metrics were proposed.

The first model-to-model metric is a new approach for the comparison of business
processes. This approach relies on the conversion of a process model into two sets
of relations: the first contains all the local relations (only between two connected
activities) that must hold; the second the relations that must not hold. These two
sets are generated starting from the relations of the Alpha algorithm but, instead of
starting from a log and performing abstractions to achieve some rules, the opposite
way is followed: given the model, local relations (expressed in terms of behavior
that is allowed in the log trace) are extracted. The proposed metric is based on the
comparison of these two sets.

The second model-to-log metric is a novel approach to check the conformance
of observed behavior (i.e., an event log) with respect to desired behavior modeled
in a declarative manner (i.e., a Declare model). Unlike earlier approaches, thanks
to this metric we are able to provide reliable diagnostics which do not depend on
the underlying LTL syntax. We provided behavioral characterizations of activations,
fulfillments, violations and conflicts. These can be used to provide detailed diag-
nostics at the event level, but can also be aggregated into health indicators such as
the fulfillment ratio (fraction of activations having no problems), violation ratio and
conflict ratio. Experiments showed that the approach scales well (polynomial in the
size of the log and in the length of the traces). Initial experiences in a case study

http://dx.doi.org/10.1007/978-3-319-17482-2_16

162 15 Results Interpretation and Evaluation

based on the event logs of two municipalities revealed that the diagnostics are indeed
very useful and can be easily interpreted.

With respect to the problems pointed out in Sect. 1.2, this chapter deals withP-04:
problems occurring, once the mined model is available, with the interpretation and
the validation of the results (see Sect. 8.3).

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8

Chapter 16
Hands-On: Obtaining Test Data

A process mining algorithm is only as good as its evaluation on actual data. Unfor-
tunately, real life data is often not available. While one can easily synthesize data
by simulating process models, event logs obtained in this way tend to show artifi-
cial patterns not found in practice, while real-life processes produce behavior not
reproduced in a naïve approach.

In this chapter we will present an approach for the random generation of business
processes and their execution logs. The proposed technique is based on the generation
of process descriptions via a stochastic context-free grammar, whose definition is
based on well-known process patterns. An algorithm for the generation of execution
instances will be proposed as well.

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_16

163

164 16 Hands-On: Obtaining Test Data

16.1 A Process and Logs Generator

A critical issue concerning process mining algorithms is the evaluation of their per-
formance, i.e., howwell the reconstructed process model matches the actual process.
The ideal setting to perform this evaluation entails the availability of an as-large-as-
possible suite of business processes. Actually, not only business process models are
required, but also one or, preferably, more logs, created according to the process they
refer to. Starting from them, different process mining algorithms can be evaluated
by checking the corresponding results of the mining against the original models.
Figure5.7 shows visual representation of such evaluation “cycle”.

Unfortunately, it is often the case that just one (even partial) log file is available,
while no clear definition of the business process that generated it is available. This
is due to the fact that many companies are reluctant to publicly distribute their own
business process data, and so it is difficult to build up a suite of publicly available
business process logs for evaluation purposes. Of course, the lack of extended process
mining benchmarks is a serious obstacle for the development of new and more
effective process mining algorithms. A way around this problem is to artificially
generate “realistic” business process models together with their execution logs.

This chapter presents a tool, developed for the specific purpose of generating
benchmarks. This tool is called “Processes Logs Generator” (or PLG) [25]. It al-
lows to:

1. generate random (hopefully “realistic”) business process models (according to
some specific user-defined parameters);

2. “execute” the generated process and register each executed activity in log files.

It is important to stress that, in designing PLG, we aimed at two main results: (i) the
generation of “realistic” processes, i.e. process models that resemble as much as pos-
sible real-world processes; (ii) at keeping independence from specific representation
formalisms, such as Petri nets. The first issuewas addressed by using a top-down gen-
eration approach (via the definition of a context-free grammar), where well-known
workflow patterns are used as building blocks. The probability that a pattern occurs
into the generated process model is controlled by the user, via parameters associated
to each pattern (i.e., we actually define a stochastic context-free grammar). The sec-
ond issue is addressed by the generation of a decorated dependency graph as process
model. From such graph it is then possible to automatically generate specific formal
models, such as a Petri net. Finally, the dependency graph is used to generate traces
for the process.

The idea to generate process models for evaluating process mining algorithms is
very recent. In [177], vanHee andZheng, at the EindhovenUniversity of Technology,
present an approach to generate Petri nets representing processes. Specifically, they
suggest to use a top-down approach, based on a stepwise refinement of Workflow
nets [164], to generate all possible process models belonging to a particular class
of Workflow network (Jackson nets). A related approach is presented in [12], where
the authors propose to generate Petri nets according to a different set of refinement

http://dx.doi.org/10.1007/978-3-319-17482-2_5

16.1 A Process and Logs Generator 165

rules. In both cases, the proposed approachdoes not address the problemof generating
traces from the developed Petri nets. Tools for the simulation of Petri nets, such as
CPN Tolls [84, 127], allow to simulate Petri net and generate MXML logs [45]:
however, integrating the process generation with their simulation resulted harder
than expected.

16.1.1 The Processes Generation Phase

This section presents the procedure for the generation of a business process. In the
first subsection we introduce the model used for the description of a generic process
and then we present the rules that are involved in the actual generation phase.

The Model for the Process Representation

Since our final aim is the easy generation ofmodels of business processes, we decided
to use a very general formalism for our processmodel description. Petri netmodels are
unambiguous and in-depth studied tools for process modeling, however controlling
the generation of a complex process model via refinement of a Petri net may not be
so easy for an inexperienced user. For this reason, we decided to model our processes
via dependency graphs. A dependency graph can be defined as a graph:

G = (V, E, astart ∈ V, aend ∈ V)

where V is the set of vertices and E is the set of edges. The two vertices astart and
aend are used to represent the “start” and the “end” activities of the process model.

Each vertex represents an activity of the process (with all its possible attributes,
such as author, duration, …), while an edge e ∈ E going from activity a1 to a2
represents a dependency relationship between the two activities (i.e. a2 can start
only after that activity a1 is completed). Let’s now define, in a straightforward way,
the concept of “incoming activities” and of “exiting activities”.

Consider v ∈ V , the set of incoming activities is defined as:

in(v) = {vi | (vi , v) ∈ E}.

Consider v ∈ V , the set of exiting (or outgoing) activities is defined as:

out(v) = {vi | (v, vi) ∈ E}.

From these two definitions we can now define two other simple concepts. Consider
v ∈ V , the value of the fan-in for v is defined as: → deg(v) = | in(v)|, i.e., the
number of edges entering in v. Consider v ∈ V , the value of the fan-in for v is
defined as: deg→(v) = | out(v)|, i.e. the number of edges exiting from v.

166 16 Hands-On: Obtaining Test Data

In order to be able to correctly represent a parallel execution of more activities
(AND) and a mutual exclusion among the execution of more activities (XOR), we
need to define the functions Tout : V → {AND, XOR} and Tin : V → {AND, XOR}
which have the followingmeaning. For any vertex (i.e. activity) a with deg→(a) > 1,
Tout(a) = AND specifies that the flow has to jointly follow all the outgoing edges,
while Tout(a) = XOR specifies that the flow has to follow only one of the outgoing
edges. Similarly, for any activity a with → deg(a) > 1,Tin(a) = AND specifies that
the activity has to wait the flow from all the incoming edges before to start, while
Tin(a) = XOR specifies that the activity has to wait the flow from just one of the
incoming edges before to start.

Using only these two basic types, we can model many real-cases, e.g. a not-
exclusive choice among activities a1, . . . , an can be modeled by an XOR activity,
where each outgoing edge leads to one AND activity for each possible proper subset
of the activities a1, . . . , an .

Generation of Random Processes

The “decorated” dependency graphs just defined can be used as general representa-
tions for the description of relations between activities. In this work, however, we are
interested in using them to describe business processes that are assembled by some
common and well-known basic “patterns”. The basic patterns we consider are the
followings (they correspond to the first patterns described in [133]):

• the direct succession of two workflows;
• the execution of more workflows in parallel;
• the mutual exclusion choice between some workflows;
• the repetition of a workflow after another workflow has been executed (as for
“preparing” the repetition).

Clearly, these patterns do not describe all the possible behaviors that can be observed
in reality, but we think that many realistic processes can be generated from them.

The idea is to start from these simple patterns and to build a complete process in
terms of them. We decided to implement this idea via a grammar whose productions
are related with the patterns mentioned above. Specifically, we define the context-
free grammar GProcess = {V, �, R, P}, where V = {P, G, G ′, G�, G∧, G⊗, A} is
the set of the not-terminal symbols, � = {; , (,),�,∧,⊗, astart, aend, a, b, c, . . . }
is the set of all terminals (their “interpretation” is described in Table16.1), and R is
the set of productions:

P → astart ; G ; aend

G → G ′ | G�
G ′ → A | (G; G) | (A; G∧; A) | (A; G⊗; A)

G� → (G ′ � G)

G∧ → G ∧ G | G ∧ G∧

16.1 A Process and Logs Generator 167

G⊗ → G ⊗ G | G ⊗ G⊗
A → a | b | c | . . .

and P is the starting symbol for the grammar.
Using the above-given grammar, a process is described by a string derived from

P . It must contain a starting and a finishing activity and, in themiddle, a sub-graph G.
A sub-graph can be either a “single sub-graph” or a “repetition of a sub-graph”. Let’s
start from the first case, a sub-graph G ′ can be: a single activity A; the sequential
execution of two sub-graphs (G; G); or the execution of some activities in AND
(A; G∧; A) or XOR (A; G⊗; A) relation. It is important to note that the generation
of parallel and mutual exclusion edges is “well structured”, in the sense that there
is always a “split activity” and a “join activity” that starts and ends the edges. It
should also be mentioned that the system treats the two patterns (A; G∧; A) and
(A; G⊗; A) in a special way, since it sets the value of Tout of the activity generated
by the first occurrence of A, to be equal to the value of Tin of the activity generated
by the second occurrence of A, i.e. AND for (A; G∧; A) and XOR for (A; G⊗; A).

The repetition of a sub-graph (G ′ � G) is described as follows: each time we
want to repeat the “main” sub-graph G ′, we have to perform another sub-graph G; the
idea is that G (that can even be only a single activity) corresponds to the “roll-back”
activities required in order to prepare the system to repetition of G ′.

The structure of G∧ and G⊗ is simple and expresses the parallel execution or the
choice between at least 2 sub-graphs. Finally, A is the set of alphabetic identifiers
for the activities (actually, this describes only the generation of the activity name, but
the implemented tool “decorates” it with other attributes, such as a unique identifier,
the author or the duration). With this definition of the grammar, there could be more
activitieswith the same name, however all the activities are considered to be different.

We provide a complete example where all the steps involved in the generation of a
process are shown. The derivation tree, presented in Fig. 16.1, defines the following
string of terminals:

Table 16.1 All the terminal
symbols of the grammar and
their meanings.

Symbols Meaning

() used for describing precedence of the operators

x; y sequential connection of x and y

x ∧ y parameters executed in parallel (AND)

x ⊗ y parameters executed in mutual exclusion (XOR)

x � y repetition of the first parameter x (the second one, y,
can be considered as a “rollback operation”)

astart “start-up” activity

aend “conclusion” activity

a, b, c … activity names

168 16 Hands-On: Obtaining Test Data

Fig. 16.1 Example of derivation tree. Note that, for space reason, we have omitted the explicit
representation of some basic productions.

Fig. 16.2 The dependency graph that describes the generated process. Each activity is composed
of 3 fields: the middle one contains the name of the activity; the left hand one and the right hand
one contain, respectively, the value of the Tin and Tout .

Fig. 16.3 Conversion of the dependency graph of Fig. 16.2 into a Petri net.

astart; (a; ((b; (c ∧ d); e; f) � g)); aend

which can be represented as the dependency graph of Fig. 16.2. Finally, it is possible
to convert this process into the Petri net shown in Fig. 16.3.

16.1 A Process and Logs Generator 169

Grammar Extension with Probabilities

In order to allow the user to control the complexity of the generated processes, we
added a probability to each production. This made possible the introduction of user’s
defined parameters to control the probability of occurrence into the generated process
of a specific pattern. In particular, the user has to specify the following probabilities:

π1 for G ′ → A
π2 for G ′ → (G; G)

π3 for G ′ → (A; G∧; A)

π4 for G ′ → (A; G⊗; A)

πl for G� → (G ′ � G)

In addition, for both the parallel pattern and the mutual exclusion pattern, our tool
requires the user to specify the maximum number of edges (m∧ and m⊗) and the
probability distribution that calculates the number of branches to generate. The sys-
tem will generate, for each AND-XOR split/join, a number of forks between 2 and
m∧ (or m⊗, depending on which construct the system is populating) according to
the given probability distribution.

At the current stage, the system supports the following probability distributions:
(i) uniform distribution; (i i) standard normal (Gaussian) distribution; (i i i) beta
distribution (with α and β as parameters). These probability distribution generate
values between 0 and 1 that are scaled into the correct interval (2 . . . m∧ or 2 . . . m⊗)
and these values indicate the number of branches to generate.

16.1.2 Execution of a Process Model

As already stated, in order to evaluate process mining algorithms, we are not only
interested in the generation of a process, butwe also need observations of the activities
executed at each process instance, i.e. logs.Herewe explain how to produce these logs
from a generated process. Please, recall that each activity is considered to be different
(a unique identifier is associated to it), even ifmore activitiesmayhave the samename.
Moreover, in order to facilitate the generation of logs, each time the system chooses
the production G ′ → A; (G ∧ G); A for the derivation of a process description, it
adds to the “split” activity (i.e. the first occurrence of A) a supplementary field with
a link to the “join” activity (i.e. the second occurrence of A). Consider, for example,
the substring a; (b ∧ c); d, with join(a) it is possible to obtain the activity d. The
algorithm for the generation uses also a stack, with the standard functions top (checks
the first element, without removing it), push (adds a new element into the stack) and
pop (removes the first element from the stack).

The procedure used for the generation of an execution of a given process is shown
in Algorithm 8. The only operation performed is the call of Algorithm 9 on the first
activity of the process using a void stack.

Algorithm9 is a recursive procedure used to record the execution of the input
activity and its successors (via a recursive invocation of the procedure). The two

170 16 Hands-On: Obtaining Test Data

Algorithm 8. ProcessTracer, Execution of a given process.
Input: P: the process model (the dependency graph)

1 a ← starting activity of P (the astart action)
2 ActivityTracer(a, ∅) /* described in Algorithm 9 */

Algorithm 9. ActivityTracer, Execution of an activity and all its successors.
Input: a: the current activity; s: stack (LIFO queue) of activities

1 if s = ∅ or top(s) 	= a then
2 RecordActivity(a) /* described in Algorithm 10 */
3 if deg→(a) = 1 then
4 ActivityTracer(out(a), s) /* recursive call */
5 else if deg→(a) > 1 then
6 if Tout(a) = XOR then
7 a1 ← random(out(a)) /* rnd outgoing act */
8 ActivityTracer(a1, s) /* recursive call */
9 else if Tout(a) = AND then

10 a j ← join(a) /* join of the current split */
11 push(s, a j)

12 foreach ai ∈ out(a) do
13 ActivityTracer(ai , s) /* recursive call */
14 end
15 pop(s)
16 ActivityTracer(a j , s) /* recursive call */
17 end
18 end
19 end

input parameters represent the current activity to be recorded and a stack containing
stopping activities (i.e., activities for which the execution of the procedure has to
stop), respectively. The last parameter is usedwhen there is anAND split: an instance
of the procedure is called for every edge but itmust stopwhen theAND join is reached
because, from there on, only one instance of the procedure can continue.

As we said, the procedure of Algorithm9 has to record the execution of an activity
and then it has to call itself on the following activity: if the current activity a is the last
one (so deg→(a) = 0) then it can terminate; if a is in a sequence (so deg→(a) = 1)
then it has just to call the same algorithm on the successor activity. Once we reach a
split, for example a XOR split (a mutual exclusion), the system has just to choose a
random activity and call itself on it. In the last case, the system has to consider the
AND split (parallel executions): with this situation it must “execute” all the successor
activities (in a not-specific order) but, in order to execute the AND join, all successor
activities must be completed. For this purpose, when the procedure is called in the
AND split, an extra parameter is passed: this parameter tells the algorithm to stop
just before reaching the AND join (actually this parameter is a LIFO (Last In First
Out) queue because there can be more AND split/join nested) and then it continues
the execution from the join.

16.1 A Process and Logs Generator 171

In the case of a split activity, the system chooses randomly the activity to follow
but all the branches are not equally probable: when the process is generated, each
edge, exiting from a split, is augmented with a “weight”: the sum of all the weights
exiting from the same split is always 1. The random selection considers these weights
as probabilities (the higher is the weight, the more probable is the selection of the
corresponding branch). As just said, these weight are assigned at the creation of the
process in this way: all the exiting branches are (alphabetically) sorted according to
the name of the activity they are entering into, and then the weights are assigned
according to a given probability distribution (as for the generation of the number
of branches, the probability distribution available are: uniform, standard normal and
beta). It is necessary to describe the meaning of “selecting a random branch” in
the two possible cases (XOR and AND). If the split is a XOR selection, then the
meaning is straightforward: if a branch is selected, it is the only one that is allowed
to continue the execution; if it is an AND-split, then the procedure will sort all the
branches (according to the weight/probability) and later will execute all the activities
in the given order.

The cases just described (discriminating on the value of deg→) are the only ones
the algorithm has to take care of, because all other “high level” patterns are described
in terms of them. For example, a loop is expressed as a XOR split (where an edge
“continues” to the next activity and the other goes back to the first activity to be
performed again). In case of a XOR split, the selection of the branch to be executed
is random; so if there is a loop (modelled as a XOR split) the execution is guaranteed
to terminate, because the probability of repeating the steps goes to 0.

Algorithm10 describes the procedure used to record an activity. It uses the extra
information of the activity, like its duration (if the activity is not instantaneous), and
it decides when an “error” must be inserted (this is required to simulate real-case
logs). In this context, an error can be either the swap between the starting time and
the end time of an activity or the removal of the activity itself.

Algorithm 10. RecordActivity, Decoration and registration of an activity.
Input: a: the activity to be recorded

1 if activity has to last a time span then
2 Set the end time for a
3 end
4 if activity has to be an “error” then
5 if the error is a “swap” then
6 Swap start time with the end time of a
7 else if the error is a removal then
8 a ← null
9 end

10 end
11 if a 	= null then
12 Register the execution of a
13 end

172 16 Hands-On: Obtaining Test Data

16.2 Implementation

The entire procedure described in this chapter has been implemented in several tools,
developed in Java language. The implementation is formed by twomain components:
a library (PLGLib) with all the functions currently implemented and a visual tool,
for the generation of processes. We find important to have a library that can be
easily imported into other projects and that can be used for the batch generation
of processes. In order to have a deep control on the generated processes, we added
another parameter (with respect to the pattern probabilities): the maximum “depth”.
Through this, the user can control themaximum number of not-terminals to generate.
Suppose the user sets the parameter to the value d; once the grammar has nested d
instances of G ′, then the only not-terminal that can be generated is A. With this
parameter there is the possibility to limit the maximum “depth” of the final process.

In the development of this tool, we tried to reuse asmany libraries as possible from
the ProM tool. For example, we use its sources for the rendering of the networks and
for the conversion into a Petri net. For storing the execution logs we use MXML. In
the visual interface, we also implemented the calculation of two metrics for the new
generated process, described in [15] (Extended Cardoso metric and the Extended
cyclomatic one).

In Fig. 16.4 there is a sample Java program that uses PLGLib to generate a random
process without specifying all the parameters (so, using the default values) except for
the maximum depth parameter. After the generation of the new process, we create
a new log, with 10 execution instances for the process and store it into a zipped
file. After this operation, the program stores the process into a file with extension
“.plg” (this is a zipped file containing an XML representation of the process), in
order to allow the loading of the same process for future use. Other functionalities
of the library are: the generation of the corresponding Heuristics net (dependency
graph), of the corresponding Petri net, the exportation of the process as dot files
[52], and the calculation of the metrics cited above. Finally, let us recapitulate the
current implementations of PLG:

1. PLG standalone1: a software that allows to generate random process models
(saving its representation as Heuristics net, Petri net and dependency graph or
saving the Petri net in a TPN file) and then can execute such model in order to
generate an MXML log file;

2. PLG-CLI2: command-line version of the PLG standalone, that is useful for the
generation of large datasets;

3. PLG-plugin3 a plugin for ProM 6.2, with the same functionalities of PLG stand-
alone, but integrated in the current version of ProM.

1The software can be downloaded for free and with its Java source code from the website http://
www.processmining.it/.
2The software can be downloaded for free from http://www.processmining.it/.
3In the current distribution of ProM 6.2, http://www.promtools.org.

http://www.processmining.it/
http://www.processmining.it/
http://www.processmining.it/
http://www.promtools.org

16.2 Implementation 173

Fig. 16.4 A sample program for the batch generation of business processes using the PLGLib
library.

The three version of the PLG are based on the same library “PLGLib”, which can be
downloaded with PLG standalone. Screenshots of the two versions with a graphical
user interface (PLG standalone and PLG-plugin) are presented in Fig. 16.5.

16.3 Summary

In this chapter, we have proposed an approach for the generation of random busi-
ness processes to ease the evaluation of process mining algorithms. The proposed
approach is based on the generation of process descriptions via a (stochastic) context-
free grammar whose definition is based on well-known process patterns; each pro-
duction of this grammar is associated with a probability and the system generates
the processes according to these values. In addition, we proposed and commented
an algorithm for the generation of execution instances.

174 16 Hands-On: Obtaining Test Data

Fig. 16.5 The software PLG. In (a) there is the standalone version, in (b) there is the ProM plugin.

Part IV
A New Challenge in Process Mining

This part introduces a new challenge for process mining algorithms: online process mining. Here
we are going to analyze some control-flow mining algorithms which are capable of mining
control-flows from event streams.

Chapter 17
Process Mining for Stream Data Sources

The number of installations of Information Systems is increasing more and more.
These systems produce huge amounts of log data. In some cases it is impossible to
store all event data in a classical log file, simply for storage limitations. Moreover,
while only few processes are in steady-state and, most of the processes, due to
changing circumstances, evolve and systems need to be flexible.

However most process discovery algorithms have been defined for processing
complete log files of a single unchanging process. As a result, existing algorithms
are difficult to apply in such evolving environments. In this chapter, we will discuss
peculiarities of mining streaming event data in the context of process mining.

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_17

177

178 17 Process Mining for Stream Data Sources

In particular, we present algorithms for discovering process models based on
streaming event data [27, 28]. In the rest of this chapter we refer to this problem as
Streaming Process Discovery (or SPD).

According to [2, 14], a data stream consists of an unbounded sequence of data
items with a very high throughput. In addition to that, the following assumptions are
typically made: (i) data is assumed to have a small and fixed number of attributes;
(ii) mining algorithms should be able to process an infinite amount of data, without
exceeding memory limits or otherwise fail, no matter howmany items are processed;
(iii) for classification tasks, data has a limited number of possible class labels; (iv) the
amount of memory available to a learning/mining algorithm is considered finite, and
typically much smaller than the data observed in a reasonable span of time; (v) there
is a small upper bound on the time within the algorithm is allowed to process an item,
e.g. algorithms have to scale linearly with the number of processed items: typically
the algorithms work with one pass of the data; (vi) stream “concepts” are assumed
to be stationary or evolving [178, 184].

In SPD, a typical task is to reconstruct a control-flow model that could have
generated the observed event log. The general representation of the SPD problem
that we adopt in this context is shown in Fig. 17.1: one or more sources emit events
(represented as solid dots) which are observed by the stream miner that keeps the
representation of the process model up-to-date. Obviously, no standard mining algo-
rithm adopting a batch approach is able to deal with this scenario.

An SPD algorithm has to give satisfactory answers to the following two categories
of questions:

1. Is it possible to discover a process model while storing a minimal amount of
information? What should be stored? What is the performance of such methods
both in terms of model quality and speed/memory usage?

2. Can SPD techniques deal with evolving processes?What is the performancewhen
the stream exhibits certain types of concept drift?

We will show how the Heuristics Miner, one of the more effective algorithms for
practical applications of process mining, can be adapted for streammining according
to our SPD framework.

With respect to the problems mentioned in Sect. 1.2, this chapter deals with P-05:
issues connected to computational power and storage capacity. These issues are also
discussed in Sect. 8.5.

17.1 Basic Concepts

The main difference between classical process mining [170] and SPD lies in the
assumed input format. For SPD we can assume that streaming event data may even
come from multiple sources rather than a static event log containing historic data.

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8

17.1 Basic Concepts 179

Fig. 17.1 General idea of SPD: the stream miner continuously receives events and, using the latest
observations, updates the process model.

In this context, we assume that each event, received by the miner, contains the
name of the activity executed, the case id it belongs to, and a timestamp. A formal
definition of these elements is:

Definition 17.1 (Activity, Case, Time and Event Stream). LetA be a set of activ-
ities andC be a set of case identifiers. An event is a triplet (c, a, t) ∈ C ×A ×N, i.e.,
the occurrence of activitya for case c (i.e. the process instance) at time t (timestampof
emission of the event).Actually, in theminer, rather thanusing an absolute timestamp,
we consider a progressive number representing the number of events seen so far, so
an event at time t is followed by another event at time t + 1, regardless the time lasts
between them. S ∈ (C ×A ×N)∗ is an event stream, i.e., a sequence of events that
are observed item by item. The events in S are sorted according to the order they are
emitted, i.e. the event timestamp.

Starting from this definition, it is possible to define some functions:

Definition 17.2 (Case time scope). tstart (c) = min(c,a,t)∈S t , i.e. the time when the
first activity for c is observed. tend(c) = max(c,a,t)∈S t , i.e. the time when the last
activity for c is observed.

Definition 17.3 (Subsequence). Given a sequence of events S ∈ (C × A × N)∗,
it is a sorted series of events: S = 〈. . . , si , . . . , si+ j , . . . 〉 where si = (c, a, t) ∈
C × A × N. A subsequence S j

i of S is a sequence that identifies the elements of S

starting at position i and finishing at position i + j : S j
i = 〈si , . . . , si+ j 〉.

In order to compare classical control-flow discovery algorithms with new algorithms
for streams, we can consider an observation period. An observation period O for
an event stream S, is a finite subsequence of S starting at time i and with size j :

180 17 Process Mining for Stream Data Sources

O = S j
i . Basically, any observation period is a finite subsequence of a stream, and

it can be understood as a classical log file (although the “head” and “tail” of some
cases may be missing). A well-established control-flow discovery algorithm that can
be applied to an observation period log is the Heuristics Miner, whose main features
are reported in Sect. 5.1.

In analogywith classical data streams, an event stream can be defined as stationary
or evolving. In our context, a stationary stream can be seen as generated by a business
process that does not change with time. On the contrary, an evolving stream can be
understood as generated by a process that changes in time. More precisely, different
modes of change can be considered: (i) drift of the process model; (ii) shift of
the process model; (iii) cases (i.e., execution instances of the process) distribution
change. Drift and shift of the process model correspond to the classical two modes
of concept drift [17] in data streams: a drift of the model refers to a gradual change
of the underlying process, while a model shift happens when a change between two
process models is more abrupt. The change in cases distribution represents another
way in which an event stream can evolve, i.e. the original process may stay the
same during time, however, the distribution of the cases is not stationary. By this we
mean that the distribution of the features of the process cases change with time. For
example, in a production process of a company selling clothing, the items involved in
incoming orders (i.e., cases features) during winter will follow a completely different
distribution with respect to items involved in incoming orders during the summer.
Such distribution change may significantly affect the relevance of specific paths in
the control-flow of the involved process.

Going back to process model drift, there is a peculiarity of business event streams
that cannot be found in traditional data streams. An event log records that a specific
activity ai of a business process P has been executed at time t for a specific case c j .
If the drift from P to P ′ happens at time t∗ while the process is running, there might
be cases for which all the activities have been executed within P (i.e., cases that have
terminated their execution before t∗), cases for which all the activities have been
executed within P ′ (i.e., cases that have started their execution on or after t∗), and
cases that have some activities executed within P and some others within P ′ (i.e.,
cases that have started their execution before t∗ and have terminated after t∗). We
will refer to these cases as transient cases. So, under this scenario, the stream will
first emit events of cases executed within P , followed by events of transient cases,
followed by events of cases executed within P ′. On the contrary, if the drift does
not occur while the process is running, the stream will first report events referring
to complete executions (i.e. cases) of P , followed by events referring to complete
executions of P ′ (no transient cases). In any case, the drift is characterized by the
fact that P ′ is very similar to P , i.e. the change in the process which emits the events
is limited.

Due to space limitation, we restrict our treatment to stationary streams and streams
with concept drift with no generation of transient cases. The treatment of other
scenarios is left for future work.

http://dx.doi.org/10.1007/978-3-319-17482-2_5

17.2 Heuristics Miners for Streams 181

17.2 Heuristics Miners for Streams

In this section,we are presenting variants of theHeuristicsMiner algorithm to address
the SPD problem under different scenarios. First of all, we present two basic algo-
rithms where the standard batch version of Heuristics Miner is used on logs, which
are built as “observation periods” extracted from the stream. These algorithmswill be
used as a baseline reference for the experimental evaluation. Subsequently, a “fully
online” version of Heuristics Miner, to cope with stationary streams, drift of the
process model with no transient cases, and shift of the process model, is introduced.

17.2.1 Baseline Algorithm for Stream Mining

The simplest way to adapt the Heuristics Miner algorithm to deal with streams is to
collect events during specific observation periods and then applying the batch version
of the algorithm to the current log. This idea is described by Algorithm 11 in which
two different policies to maintain events in memory are considered. Specifically, an
event e from the stream S is observed (e ← observe(S)) and analyzed (analyze(e))
to decide if the event has to be considered for mining. If this is the case, it is checked
whether there is room in memory to accommodate the event. If the memory is full
(size(M) = maxM) then the memory policy given as input is adopted. Two different
policies are considered: periodic resets, and sliding windows [2, Chap. 8]. In the case
of periodic resets, all the events contained in memory are deleted (reset), while in the
case of sliding windows, only the oldest event is deleted (shift). Subsequently, e is

Algorithm 11. Sliding Window HM / Periodic Resets HM
Input: S event stream;M memoryof size maxM ;PM memory policy (can be ‘reset’ or ‘shift’)

1 forever do
2 e ← observe(S) /* observe an event, where e = (ci , ai , ti) */

/* Check if event e has to be used */
3 if analyze(e) then

/* Memory update */
4 if size(M) = maxM then
5 if PM is reset then reset(M)

6 if PM is shift then shift(M)

7 end
8 insert(M, e)

/* Mining update */
9 if perform mining then

10 HeuristicsMiner(M)

11 end
12 end
13 end

182 17 Process Mining for Stream Data Sources

inserted in memory and it is checked if it is necessary to perform a mining action. If
mining has to be performed, the HeuristicsMiner algorithm is executed on the events
in memory (HeuristicsMiner(M)). Graphical representations of the two policies are
reported in Fig. 17.2.

Fig. 17.2 Two basic approaches for the definition of a finite log out of a stream of events. The
horizontal segments represent the time frames considered for the mining.

A potential advantage of the two policies described consists in the possibility to
mine the log not only by using Heuristics Miner, but also using any process mining
algorithm already available for traditional batch process discovery techniques (not
only for control-flow discovery, for example it is possible to extract information
about the social network). However, the notion of “history” is not very accurate:
only the more recent events are considered, and an equal importance is assigned to
all of them. Moreover, the model is not updated in real-time, since each new event
received triggers only the update of the log, not necessarily also an update of the
model: performing a model update for each new event would result in a significant
computational burden, well outside the computational limitations assumed for a
true online approach. In addition to that, the time required by these approaches is
completely unbalanced: when a new event arrives, only inexpensive operations are
performed; instead, when the model needs to be updated, the log retained in memory
is mined from scratch. So, every event is handled at least twice: the first time to store

17.2 Heuristics Miners for Streams 183

it into a log and subsequently any time the mining phase takes place on it. In an
online setting, it is more desirable a procedure that does not need to process each
event more than once (“one pass algorithm” [138]).

17.2.2 Stream-Specific Approaches

In this section, we suggest how to modify the scheme of the basic approaches, so to
implement a real online framework, the final approach is described in Algorithm 12.
In this framework: the “current” log is described in terms of “latest observed activi-
ties” and “latest observed dependencies”. Specifically, we define three queues:

1. QA , with entries inA ×R, stores the most recent observed activities jointly with
a weight for each activity (that represents its degree of importance with respect
to mining);

2. QC , with entries in C ×A , stores the most recent observed event for each case;
3. QR with entries inA ×A ×R, stores the most recent observed direct succession

relations jointly with a weight for each succession relation (that represents its
degree of importance with respect to mining).

These queues are used by the online algorithm to retain the information needed to
perform mining.

The detailed description of the newalgorithm is presented inAlgorithm12. Specif-
ically, the algorithm runs forever, considering, at each round, the current observed
event e = (ci , ai , ti). For each current event, it is checked if ai is already in QA . If
this is not the case, ai is inserted in QA with weight 0. If ai is already present in
the queue, it is removed from its current position and moved at the beginning of the
queue. In any case, before insertion, it is checked if QA is full. If this is the case,
the oldest stored activity, i.e. the last in the queue, is removed. Subsequently, the
weights of QA are updated by fWA . After that, queue QC is examined to look for
the most recent event observed for case ci . If a pair (ci , a) is found, it is removed
from the queue, an instance of the succession relation (a, ai) is created and searched
in QR . If it is found, it is moved from the current position to the beginning of QR .
If it is a new succession relation, its weight is set to 0. In any case, before insertion,
it is checked if QR is full. If this is the case, the oldest stored relation, i.e. the last in
the queue, is removed. Subsequently, the weights of QR are updated by fWR . Next,
after checking if QC is full (in which case the oldest stored event is removed), the
event e is stored in QC .

Finally, it is checked if amodel has to be generated. If this is the case, the procedure
generateModel(QA , QR) is executed taking as input the current version of queues
QA and QR and producing “classical” model representations, such as Causal Nets
[149] or Petri nets.

Algorithm 12 is parametric with respect to: i) in which way weights of queues
QA and QR are updated by fWA , fWR , respectively; ii) how a model is generated
by generateModel(QA , QR). In the following, generateModel(·, ·)will correspond
to the procedure defined by Heuristics Miner. In particular, it is possible to consider

184 17 Process Mining for Stream Data Sources

Algorithm 12. Online HM
Input: S event stream;maxQA , maxQC , maxQR maximummemorysizes forqueues QA ,

QC , and QR, respectively; fWA , fWR model policy; generateModel(·, ·).
1 forever do
2 e ← observe(S) /* observe a new event, where e = (ci , ai , ti) */

/* check if event e has to be used */
3 if analyze(e) then

4 if � ∃(a, w) ∈ QA s.t. a = ai then
5 if size(QA) = maxQA then
6 removeLast(QA) /* removes last entry of QA */
7 end
8 w ← 0
9 else

10 w ← get (QA , ai) /* get returns the old weight w of ai and
removes (ai , w) */

11 end
12 insert(QA , (ai , w)) /* inserts in front of QA */
13 QA ← fWA (QA) /* updates the weights of QA */

14 if ∃(c, a) ∈ QC s.t. c = ci then
15 a ← get (QC , ci) /* get returns the old activity a of ci

and removes (ci , a) */
16 if � ∃(as , a f , u) ∈ QR s.t. (as = a) ∧ (a f = ai) then
17 if size(QR) = maxQR then
18 removeLast(QR) /* removes last entry of QR */
19 end
20 u ← 0
21 else
22 u ← get(QR, a, ai) /* get returns the old weight u of

relation a → ai and removes (a, ai , u) */
23 end
24 insert(QR, (a, ai , u)) /* inserts in front of QR */
25 QR ← fWR (QR) /* updates the weights of QR */
26 else if size(QC) = maxQC then
27 removeLast(QC) /* removes last entry of QC */
28 end
29 insert(QC , (ci , ai)) /* inserts in front of QC */

/* generate model */
30 if model then
31 generateModel(QA , QR)

32 end
33 end
34 end

QA as the counter of activities (to filter out only the most frequent ones) and QR
as the counter of direct succession relations, which are used for the computation of
the dependency values between pairs of activities. The following subsections present
some specific instances for fWA and fWR .

17.2 Heuristics Miners for Streams 185

Online Heuristics Miner (Stationary Streams)

In the case of stationary streams, we can reproduce the behavior of Heuristics Miner
as follows. QA should contain, for each activity a, the number of occurrences of a
observed in S till the current time. Similarly, QR should contain, for each succession
(a, b), the number of occurrences of (a, b) observed in S till the current time. Thus
both fWA and fWR must just increment the weight of the first element of the queue:

fWA ((a, w)) =
{

(a, w + 1) if first(QA) = (a, w)

(a, w) otherwise

fWR((a, b, w)) =
{

(a, b, w + 1) if first(QR) = (a, b, w)

(a, b, w) otherwise

where first(·) returns the first element of the queue.
In case of stationary streams, it is possible to use the Hoeffding bound to derive

error bounds on the measures computed by the online version of Heuristics Miner.
These bounds became tighter and tighter with the increase of the number of processed
events. Section17.3 reports some details on that.

It must be noticed that, if the sizes of the queues are large enough, the Online
HeuristicsMiner collects all the needed statistics from the beginning of the stream till
the current time. So it performs very well, considering that the activity distribution
of the stream is stationary. However, in real world business processes, it is natural
to observe variations both in events distribution and in the workflow of the process
generating the stream (concept drift).

In order to cope with concept drift, more importance should be given to more
recent events than to older ones. In the following we present a variant of Online
Heuristics Miner able to do that.

Online Heuristics Miner with Aging (Evolving Streams)

The idea, in this case, is to decrease theweights for the events (and relations) over time
when they are not observed. So, every time a new event is observed, only the weight
of its activity (and observed succession) is increased, all the others are reduced. Given
an “aging factor” α ∈ [0, 1), the weight functions fWA (for activities) and fWR (for
succession relations) are modified so to replace all the occurrences of w on the right
side of the equality with αw:

fWA ((a, w)) =
{

(a, (αw) + 1) if first(QA) = (a, w)

(a, αw) otherwise

186 17 Process Mining for Stream Data Sources

fWR((a, b, w)) =
{

(a, b, (αw) + 1) if first(QR) = (a, b, w)

(a, b, αw) otherwise

The basic idea of these new functions is to decrease the “history” (i.e., the current
number of observations) by an aging factor α (in the formula: αw) before increasing
it by 1 (the new observation).

These new functions decrease all the weights associated to either an event or a
succession relation according to the aging factor α, which determines the “speed”
in forgetting an activity or succession relation, however the most recent observation
(the first in the respective queue) is increased by 1. Notice that, if an activity or
succession relation is not observed for t time steps, its weight becomes αt . Thus
the value of α allows to control the speed of “forgetting”: the closer α is to 0, the
faster the weight associated to an activity (or succession relation) that has not been
observed for some time goes to 0, thus to allow the miner to assign larger values
to recent events. In this way the miner is more sensitive to sharp variations of the
event distribution (concept shift); however the output (generated models) may be
less stable because the algorithm becomes more sensitive to random fluctuations of
the sampling distribution. When the value of α is close to 1, activities that have not
been observed recently, but were seen more often some time ago, are able to retain
their significance, thus allowing the miner to be able to cope with mild variations of
the event distribution (concept drift), but not so reactive in case of concept shift.

One drawback of this approach is that, while it is able to “forget” old events, it
is not able, at time t , to preserve precise statistics for the last k observations and to
completely drop observations occurred before time t −k. This ability could be useful
in case a sudden drastic change in the event distribution.

Online Heuristics Miner with Self-adapting Aging (Evolving Stream)

The third approach explored in this section introduces α as a parameter to control the
importance of the “history” for the mining: the closer it is to 1, the more importance
is given to the history. The value of α, should be decided according to the known
degree of “not-stationarity” of the stream; however, this information might not be
available or it might not be fixed (for example, the process is stationary for a period,
then it evolves, and then it becomes stationary again). To handle these cases, it is
possible to dynamically adapt the value of α. In particular, the idea is to lower the
value of α when a drift is observed and to increase it when the stream seems to be
stationary.

A possible approach to detect the drift is to monitor for variations on the fitness
value. This measure, evaluated at a certain period, can be considered as the amount
of events (considering only the latest ones) that the current mined process is able to
explain.When thefitness value changes drastically, it is likely that a drift has occurred.
Using the drift detection, it is possible to adapt α according to the following rules:

17.2 Heuristics Miners for Streams 187

• if the fitness decreases (i.e. there is a drift) α should decreases too (up to 0), in
order to allow the current model to adapt to the new data;

• if the fitness remains unchanged (i.e. it is within a small interval), it means that
there is no drift so the value of α should be increased (up to 1);

• if the fitness increases, α should be increased too (up to 1).

The experiments, presented on the next section, consider only variations of α by a
constant factor. Alternative update policies (e.g. making the speed of change of α

proportional to the observed fitness change) are not shown here, but can be considered
fur future investigations.

17.2.3 Stream Process Mining with Lossy Counting
(Evolving Stream)

The approach presented in this section is an adaptation of an existing technique,
used to approximate frequency count. In particular, we modified the “Lossy Count-
ing” algorithm described in [102]. We preferred this approach to Sticky Sampling
(described in the same paper) since authors stated that, in practice, Lossy Counting
performs better. The entire procedure is presented in Algorithm 13.

The basic idea of Lossy Counting algorithm is to conceptually divide the stream
into buckets of width w = ⌈ 1

ε

⌉
, where ε ∈ (0, 1) is an error parameter. The current

bucket (i.e., the bucket of the last element seen) is identified with bcurrent = ⌈ N
w

⌉
,

where N is the progressive events counter.
The basic data structure used by Lossy Counting is a set of entries of the form

(e, f,Δ)where: e is an element of the stream; f is the estimated frequency of the item
e; and Δ is the maximum possible error. Every time a new element e is observed, the
algorithm looks whether the data structure contains an entry for the corresponding
element. If such entry exists, then its frequencyvalue f is incremented by1, otherwise
a new tuple is added: (e, 1, bcurrent − 1). Every time N ≡ 0 mod w, the algorithm
cleans the data structure by removing the entries that satisfy the following inequality:
f + Δ ≤ bcurrent . Such condition ensures that, every time the cleanup procedure is
executed, bcurrent ≤ εN .

This algorithm has been adapted to the SPD problem, using three instances of the
basic data structure. In particular, it counts the frequencies of the activities (with
the data structure DA) and the frequencies of the direct succession relations (with
the data structure DR). In order to obtain the relations, a third instance of the same
data structure is used, DC . In DC , each item is of the type (c, a, f,Δ) where c ∈ C
represents the case identifier; f and Δ, as in previous cases, respectively correspond
to the frequency and to the bucket id; and a ∈ A is the latest activity observed on
the corresponding case. Every time a new activity is observed, DA is updated. After
that, the procedure checks if, given the case identifiers of the current event, there is
an entry in DC . If this is not the case a new entry is added to DC (by adding the
current case id and the activity observed). Otherwise, the f and a components of the
entry in DC are updated.

188 17 Process Mining for Stream Data Sources

Algorithm 13. Lossy Counting HM
Input: S event stream;N the bucket counter (initially value 1);DA activities set;DC cases set;DR relations set;

generateModel(·, ·).
1 w ←

⌈
1
ε

⌉
/* define the bucket width */

2 forever do

3 bcurrent =
⌈

N
w

⌉
/* define the current bucket id */

4 e ← observe(S) /* observe a new event, where e = (ci , ai ,Δi) */

/* update the DA data structure */
5 if ∃(a, f, Δ) ∈ DA such that a = ai then
6 Remove the entry (a, f, Δ) from DA
7 DA ← (a, f + 1, Δ) /* updates the frequency of element ai */
8 else
9 DA ← DA ∪ {(ai , 1, bcurrent − 1)} /* inserts the new observation */

10 end

/* update the DC data structure */
11 if ∃(c, a, f, Δ) ∈ DC such that c = ci then
12 Remove the entry (c, a, f, Δ) from DC
13 DC ← (c, ai , f + 1, Δ) /* updates the frequency and last activity of case

ci */

/* update the DR data structure */
14 Build relation ri as a → ai
15 if ∃(r, f, Δ) ∈ DR such that r = ri then
16 Remove the entry (r, f, Δ) from DR
17 DR ← (r, f + 1, Δ) /* updates the frequency of element ri */
18 else
19 DR ← DR ∪ {(ri , 1, bcurrent − 1)} /* adds the new observation */
20 end
21 else
22 DC ← DC ∪ {(ci , ai , 1, bcurrent − 1)} /* adds the new observation */
23 end

/* periodic cleanup */
24 if N = 0 mod w then
25 foreach (a, f, Δ) ∈ DA such that f + Δ ≤ bcurrent do
26 Remove (a, f, Δ) from DA
27 end
28 foreach (c, a, f, Δ) ∈ DC such that f + Δ ≤ bcurrent do
29 Remove (c, a, f, Δ) from DC
30 end
31 foreach (r, f, Δ) ∈ DR such that f + Δ ≤ bcurrent do
32 Remove (r, f, Δ) from DR
33 end
34 end

35 N ← N + 1 /* increments the bucket counter */

/* generate model */
36 if model then
37 generateModel(DA,DR)

38 end
39 end

17.2 Heuristics Miners for Streams 189

The Heuristics Miner can be used to generate the model, since a set of dependen-
cies between activities is available.

17.3 Error Bounds on Online Heuristics Miner

If we assume a stationary stream, i.e. a stream where the distribution of events does
not change with time (no concept drift), then it is possible to give error bounds on
the measures computed by the online version of Heuristics Miner.

In fact, let’s consider an execution of the online Heuristics Miner on the stream S.
Let QA (t), QC (t), and QR(t) be the content of the queues used by Algorithm 12
at time t . Let caseoverlap(t) = {c ∈ C | tstart(c) ≤ t ∧ tend(c) ≥ t} be the set of
cases that are active at time t ; Δc = maxt |caseoverlap(t)|; nc(t) be the cumulative
number of cases which have been removed from QC (t) during the time interval
[0, t]; and nc(t) = |QC (t)| + nc(t). Given two activities a and b, let ρab ∈ [0, ξab]
be the random variable reporting the number of successions (a, b) contained in a
randomly selected trace in S. With AS and RS we denote the set of activities and
successions, respectively, observed within the entire stream S. Then it is possible to
state the following theorem:

Theorem 17.1 (Error bounds). Let (a ⇒S b), a ⇒S (b ∧ c), be the measures
computed by the Heuristics Miner algorithm on a time-stationary stream S, and
(a ⇒St

0
b), a ⇒St

0
(b ∧ c), be the measures computed at time t by the online version

of the Heuristics Miner algorithm on the stream S. If maxA ≥ |AS|, maxR ≥ |RS|,
maxC ≥ Δc, then with probability 1 − δ the following bounds hold:

(a ⇒S b)

(
E[ρab + ρba]

E[ρab + ρba] + εab(t) + 1
nc(t)

)
−

εab(t)

E[ρab + ρba] + εab(t) + 1
nc(t)

≤ (a ⇒St
0

b)

(a ⇒St
0

b) ≤ (a ⇒S b)

(
E[ρab + ρba]

E[ρab + ρba] − εab(t) + 1
nc(t)

)
+

εab(t)

E[ρab + ρba] − εab(t) + 1
nc(t)

And, similarly, for a ⇒ (b ∧ c):

190 17 Process Mining for Stream Data Sources

(a ⇒S (b ∧ c))

(
E[ρbc + ρcb]

E[ρab + ρac] + εabc(t) + 1
nc(t)

)
−

εbc(t)

E[ρab + ρac] + εabc(t) + 1
nc(t)

≤ (a ⇒St
0

(b ∧ c))

(a ⇒St
0

(b ∧ c)) ≤ (a ⇒S (b ∧ c))

(
E[ρbc + ρcb]

E[ρbc + ρcb] − εabc(t) + 1
nc(t)

)
+

εbc(t)

E[ρab + ρac] − εabc(t) + 1
nc(t)

where ∀d, e, f ∈ AS, εde(t) =
√

(ξde+ξed)2 ln(2/δ)
2nc(t) , εde f (t) =

√
(ξde+ξd f)

2 ln(2/δ)
2nc(t) ,

and E[x] is the expected value of x.

Proof. Let consider the Heuristics Miner definition (a ⇒S b) = |a>Sb|−|b>Sa|
|a>Sb|+|b>Sa|+1

(as presented in Eq.11.1). Let Nc be the number of cases contained in St
0, then

(a ⇒St
0

b) = |a >St
0

b| − |b >St
0

a|
|a >St

0
b| + |b >St

0
a| + 1

=
|a>St

0
b|−|b>St

0
a|

Nc

|a>St
0

b|+|b>St
0

a|
Nc

+ 1
Nc

and

(a ⇒S b) = lim
Nc→+∞

|a>St
0

b|−|b>St
0

a|
Nc

|a>St
0

b|+|b>St
0

a|
Nc

+ 1
Nc

= E[ρab − ρba]
E[ρab + ρba] .

We recall that X = |a>St
0

b|−|b>St
0

a|
Nc

is the mean of the random variable X =
(ρab − ρba) computed over Nc independent observations, i.e. traces, and that
X ∈ [−ξba, ξab]. We can then use the Hoeffding bound [81] that states that, with
probability 1 − δ

∣∣X − E[X]∣∣ < εX =
√

r2X ln
(2

δ

)

2Nc
,

where rX is the range of X , which in our case is rX = (ξab + ξba).
By using the Hoeffding bound also for the variable Y = (ρab +ρba), we can state

that with probability 1 − δ

E[X] − εX

E[Y] + εY + 1
Nc

≤ X

Y + 1
Nc

= (a ⇒St
0

b),

which after some algebra can be rewritten as

http://dx.doi.org/10.1007/978-3-319-17482-2_11

17.3 Error Bounds on Online Heuristics Miner 191

E[X]
E[Y]

(
E[Y]

E[Y] + εY + 1
Nc

)
− εX

E[Y] + εY + 1
Nc

≤ (a ⇒St
0

b)

By observing that (a ⇒S b) = E[X]
E[Y] , rX = rY = (ξab +ξba), and that at time t , under

the theorem hypotheses, no information is removed from the queues and Nc = nc(t),
the first bound is proved. The second bound can be proved starting from

(a ⇒St
0

b) ≤ E[X] + εX

E[Y] − εY + 1
Nc

.

The last two bounds can be proved in a similar way by considering X = (ρbc +
ρcb) ∈ [0, ξbc + ξcb] and Y = (ρab + ρac) ∈ [0, ξab + ξac], which leads to εX =√

(ξbc+ξcb)2ln(2/δ)
2Nc

and εY =
√

(ξab+ξac)2ln(2/δ)
2Nc

.

Similar bounds can be obtained also for the other measures computed by Heuristics
Miner. From the bounds it is possible to see that, with the increase of the number
of observed cases nc(t), both 1

nc(t) and the errors εab(t) and εabc(t) go to 0 and the
measures computed by the online version of Heuristics Miner consistently converge
to the “right” values.

17.4 Results

The algorithms presented in this chapter have been tested using four datasets: event
logs from two artificial processes (one stationary and one evolving); a synthetic
example; and a real event log.

Fig. 17.3 Model 1. Process model used to generate the stationary stream.

Fig. 17.4 Model 2. The three process models that generate the evolving stream. Red rounded
rectangles indicate areas subject to modification (Color figure online).

192 17 Process Mining for Stream Data Sources

Fig. 17.5 Model 3. The first variant of the third model. Red rounded rectangles indicate areas that
will be subject to the modifications (Color figure online).

17.4.1 Models Description

The two artificial processes are shown in Figs. 17.3 and 17.4, both are described in
terms of a Petri net. The first one (Model 1) describes the complete model that is
simulated to generate the stationary stream. The second one (Model 2) presents the
three models which are used to generate three logs describing an evolving stream.
In this case, the final stream is generated considering the hard shift of the three logs
generated from the single process executions.

The synthetic example (Model 3) is reported in Fig. 17.5. This example is taken
from [16, Chap.5] and is expressed as a YAWL [159] process. This model describes a
possible health insurance claim process of a travel agency. This example is modified
4 times so, at the end, the stream contains traces from 5 different processes. Also in
this case the type of drift is shift. Due to space limitation, only the first process is
presented and the red rectangles indicate areas that are modified over time.

17.4.2 Algorithms Evaluation

The streams generated from the described models are used for the evaluation of the
techniques presented in the previous sections. There are various metrics to evaluate
the process models with respect to an event log. Typically four quality dimensions
are considered for comparing model and log: (a) fitness, (b) simplicity, (c) precision,
and (d) generalization [150]. In order to measure how well the model describes the
log without allowing the reply of traces not generated by the target process, here we
measure the performance both in terms of fitness (computed according to [1]) and
in terms of precision (computed according to [110]). The first measure reaches its
maximum when all the traces in the log are properly replied by the model, while

17.4 Results 193

Fig. 17.6 Aggregated experimental results for five streams generated by Model 1. Evolution in
time of average fitness for Online HM with queues size 100 and log size for fitness 200; curves for
HM with Aging (α = 0.9985 and α = 0.997), HM with Self Adapting (evolution of the α value
is shown at the bottom), Lossy Counting and different configurations of the basic approaches are
reported as well.

the second one prefers models that describe a “minimal behavior” with respect to all
the models that can be generated starting from the same log. In all experiments, the
fitness and precision measures are computed over the last x observed events (where
x varies according to log size), q refers to the maximum size of queues, and default
parameters of Heuristics Miner, for model generation, are used.

The main characteristics of the three streams are:

• Streams for Model 1: 3448 events, describing 400 cases;
• Streams for Model 2: 4875 events, describing 750 cases (250 cases and 2000 events
for the first processmodel, 250 cases and 1750 events for the second, and 250 cases
with 1125 events for the third one);

• Stream for Model 3: 58783 events, describing 6000 cases (1199 cases and 11838
events for the first variant; 1243 cases and 11690 events for the second variant;
1176 cases and 12157 events for the third variant; 1183 cases and 10473 events
for the fourth variant; and 1199 cases and 12625 events for the fifth variant).

We compared the basic approaches versus the different online versions of stream
miner, against the different streams.

Model 1

Figure17.6 reports the aggregated experimental results for the five streams generated
by Model 1. The figure presents, on the left hand side, a comparison of the evolution
of the average fitness of the Online HM, the HM with Aging (α = 0.9985 and
α = 0.997), theHMwith SelfAdapting approach andLossyCounting. For these runs
a queue size of 100has beenused and, for thefitness computation, the latest 200 events
are considered. In this case, the lossy counting considers an error value ε = 0.01. The
right hand side of Fig. 17.6 compares the basic approaches,with differentwindowand

194 17 Process Mining for Stream Data Sources

Fig. 17.7 Aggregated experimental results for five streams generated by evolving Model 2. Evo-
lution in time of average fitness for Online HM with queues size 100 and log size for fitness 200;
curves for HM with Aging (α = 0.997), HM with Self Adapting (evolution of the α value is shown
at the bottom), Lossy Counting and different configurations of the basic approaches are reported as
well. Drift occurrences are marked with vertical bars.

fitness sizes against the Online HM and the Lossy Counting approach. As expected,
since there is no drift, the Online HM outperforms the versions with aging. In fact,
HM with Aging, beside being less stable, also degrades performances as the value
of α decreases, i.e. less importance is given to less recent events. This is consistent
with the bad performance reported for the basic approaches which can exploit only
the most recent events contained in the window. The self adapting strategy, after an
initial variation of theα parameter, is able to converge to theOnlineHMby eventually
choosing a value of α equals to 1.

Model 2

Figure17.7 reports the aggregated experimental results for the five streams generated
byModel 2. In this case, we adopted exactly the same experimental setup, procedure
and results presentation described before. In addition, the occurrences of drift are
marked. As expected, the performance of Online HM decreases at each drift, while
HM with Aging is able to recover from the drifts. The price paid for this ability is a
less stable behavior. HMwith Self Adapting aging seems to be the right compromise,
eventually able to recover from the drifts while showing a stable behavior. The α

curve shows that the self adapting strategy seems to be able to detect the concept
drifts.

Model 3

The Model 3, with the synthetic example, has been tested with the basic approaches
(Sliding Windows and Periodic Resets), the Online HM, the HMwith Self Adapting

17.4 Results 195

Fig. 17.8 Detailed results of the basic approaches, Online HM, HM with Self Adapting and Lossy
Counting (with different configurations) on data of Model 3. Vertical gray lines indicate points
where concept drift occur.

and the Lossy Counting and the results are presented in Fig. 17.8. In this case, the
LossyCounting and theOnlineHMoutperform theother approaches.LossyCounting
reaches higher fitness values, however Online HM is more stable and seems to better
tolerate the drifts. The basic approaches and the HM with Self Adapting, on the
other hand, are very unstable; moreover it is interesting to note that the value of α,
of the HM with Self Adapting, is always close to 1. This indicates that the short
stabilities of the fitness values are sufficient to increase α, so the updating policy (i.e.
the increment/decrement speed of α) presented, for this particular case, seems to be
too fast. The second graph, on the bottom, presents three runs of the Lossy Counting,
with different values for ε. As expected, the lower the value of the accepted error,
the better the performances.

Due to the size of this dataset, it is interesting to evaluate the performance of the
approaches also in terms of space and time requirements.

Figure17.9 presents the averagememory required by theminer during the process-
ing of the entire log. Different configurations are tested, both for the basic approaches

196 17 Process Mining for Stream Data Sources

Fig. 17.9 Average memory requirements, in MB, for a complete run over the entire log of Model
3, of the approaches (with different configurations).

with the Online HM and the HM with Self Adapting, and the Lossy Counting al-
gorithm. Clearly, as the windows grow, the space requirement grows too. For what
concerns the Lossy Counting, again, as the ε value (accepted error) becomes lower,
more space is required. If we pick the Online HM with window 1000 and the Lossy
Counting with ε 0.01 (from Fig. 17.8, both seem to behave similarly) the Online HM
consumes less memory: it requires 128.3MB whereas the Lossy Counting needs
143.8. Figure17.10 shows the time performance of different algorithms and differ-
ent configurations. It is interesting to note, from the chart at the bottom, that the time
required by the Online and the Self Adapting is almost independent from the config-
urations. Instead, the basic approaches need to perform more complex operations:
the Periodic Reset has to add the new event and, sometimes, it resets the log; the
Sliding Window has to update the log every time a new event is observed.

In order to study the dependence of the storage requirements of Lossy Counting
with respect to the error parameter ε, we have run experiments on the same log for
different values of ε, recording the maximum size of the Lossy Counting sets during
execution. Results for x = 1000 are reported in Fig. 17.11. Specifically, the figure
compares the maximum size of the generated sets, the average fitness value and the
average precision value.As expected, as the value of ε becomes larger, both the fitness
value and the sets size quickly decrease. The precision value, on the contrary, initially
decreases and then goes up to very high values. This indicates an over-specialization
of the model to specific behaviors.

As an additional test, we decide to compare the proposed algorithms under ex-
treme storage conditions which do allow only to retain limited information about
the observed events. Specifically, Table17.1 reports the average time required to
process a single event, average fitness and precision values when queues with size
10 and 100, respectively, are used. For Lossy Counting we have used an ε value
which approximately requires sets of similar sizes. Please note that, for this log, a
single process trace is longer than 10 events so, with a queue of 10 elements it is not
possible to keep in queue all the events of a case (because events of different cases
are interleaved). From the results it is clear that, under these conditions, the order of

17.4 Results 197

Fig. 17.10 Time performances over the entire log ofModel 3. Top: time required to process a single
event by different algorithms (logarithmic scale). Vertical gray lines indicate points where concept
drift occur. Bottom: average time required to process an event over the entire log, with different
configurations of the algorithms.

occurrence of the algorithms in the table (column order) is inversely proportional to
all the evaluation criteria (i.e. execution time, fitness, precision).

The online approaches presented in this work have been tested also against a real
dataset and results are presented in Fig. 17.12. The reported results refer to 9000
events generated from the document management system, by Siav S.p.A., and run
on an Italian bank institute. The observed process contains 8 activities and is assumed
to be stationary. The mining is performed using a queues size of 100 and, for the
fitness computation, the latest 200 events are considered. The behavior of the fitness
curves seems to indicate that some minor drifts occur.

As stated before, the main difference between Online HM and Lossy Counting
is that, whereas the main parameter of Online HM is the size of the queues (i.e. the
maximum space the application is allowed to use), the ε parameter of Lossy Counting
cannot control the memory occupancy of the approach. Figure17.13 proposes two
comparisons of the approaches with different configurations, against the real stream
dataset. In particular we defined the two configurations so that the average memory
required by Lossy Counting and Online HM are very close. The results presented
are actually the average values over four runs of the approaches. Please note that

198 17 Process Mining for Stream Data Sources

Fig. 17.11 Comparison of the average fitness, precision and space required,with respect to different
values of ε for the Lossy Counting HM executed on the log generated by Model 3.

Table 17.1 Performance of different approaches with queues/sets size of q = 10 and q = 100
elements and x = 1000. Online HM with Aging uses α1/q = 0.9. Time values refer to the average
number of milliseconds required to process a single event of the stream generated by Model 3.

the two configurations validates the fitness against different window sizes (in the
first case it contains 200 events, in the second one 1000) and this causes the second
configuration to validate results against a larger history.

The top part of the figure presents a configuration that uses, on average, about
100 MB. To obtain these performances, several tests have been made and, at the end,
for Lossy Counting these parameters have been used: ε : 0.2, fitness queue size: 200.
For Online HM, the same fitness is used, but the queue size is set to 500. As the plot
shows, it is interesting to note that, in terms of fitness, this configuration is absolutely
enough for the Online HM approach instead, for Lossy Counting, it is not. The sec-
ond plot, at the bottom, presents a different configuration that uses about 170MB. In
this case, the error (i.e. ε) for Lossy Counting is set to 0.01, the queue size of Online
HM is set to 1500 and, for both, the fitness queue size is set to 1000. In this case the
two approaches generate really close results, in terms of fitness.

17.4 Results 199

Fig. 17.12 Fitness performance on the real stream dataset by different algorithms.

As final consideration, this empirical evaluation clearly shows that –at least in
our real dataset– both Online HM and Lossy Counting are able to reach very high
performances, however the Online is able to better exploit the information available
with respect to the Lossy Counting. In particular, Online HM considers only a finite
number of possible observations (depending on the queue size) that, in this particular
case, are sufficient to mine the correct model. The Lossy Counting, on the contrary,
keeps all the information for a certain time-frame (obtained starting from the error
parameter) without considering how many different behaviors are already seen.

Note on Fitness Measure

The usage of fitness for the evaluation of stream process mining algorithms seems
to be an effective choice. However, this might not always be true: let’s consider two
very different processes P ′ and P ′′ and a stream composed of events generated by
alternate executions of P ′ and P ′′. Under specific conditions, the stream miner will
generate a model that contains both P ′ and P ′′, connected by an initial XOR-split
and merged with a XOR-join. This model will show a very high fitness value (it
can replay traces from both P ′ and P ′′), however the mined model is not the one
expected, i.e. the alteration in time of P ′ and P ′′ is not reflected well.

In order to deal with the problem above-mentioned, we propose to perform some
approaches also in terms of “precision”. This measure is thought to prefer models
that describe a “minimal behavior” with respect to all themodel that can be generated
starting from the same log. In particular, we used the approach by Muñoz-Gama and
Carmona described in [110]. Figure17.14 presents the precision calculated for four
approaches during the analysis of the dataset of real events. It should not surprise that
the stream specific approaches reach very good precision values, whereas the basic
approach with periodic reset needs to recompute, every 1000 events, the model from
scratch. It is interesting to note that both Online HM and Lossy Counting are not

200 17 Process Mining for Stream Data Sources

Fig. 17.13 Performances comparison between Online HM and Lossy Counting, in terms of fitness
and memory consumption.

able to reach the top values, whereas the Self adapting one, after some time, reaches
the best precision, even if its value fluctuates a little. The basic approach with sliding
window, instead, seems to behave quite nicely, even if the stream specific approaches
outperform it.

17.5 Implementation 201

Fig. 17.14 Precision performance on the real stream dataset by different algorithms.

1 <log openxes.version="1.0RC7" xes.features="nested -attributes"

xes.version="1.0" xmlns="http ://www.xes -standard.org/">

2 <trace >

3 <string key="concept:name" value="case_id_0" />

4 <event >

5 <date key="time:timestamp"

value="2015 -01 -23 T10 :33:04.004+02:00" />

6 <string key="concept:name" value="A" />

7 <string key="lifecycle:transition" value="Task_Execution"

8 />

9 </event >

10 </trace >

11 </log >

Listing 17.1 OpenXES fragment streamed over the network.

17.5 Implementation

All the approaches presented in this chapter have been implemented in the ProM
6.1 toolkit. Moreover, a “stream simulator” and a “logs merger” have also been
implemented to allow for experimentation (to test new algorithms and to compose
logs).

Communications between stream sources and stream miner are performed over
the network: each event emitted consists of a “small log” (i.e., a trace which contains
exactly one event), encoded as a XES string. An example of an event log streamed
is presented in Listing 17.1. This approach is useful to simulate “many-to-many
environments” where one source emits events to many miners and one miner can use
many stream sources. The current implementation supports only the first scenario
(currently it is not possible to mine streams generated by more than one source).

Figure17.15 proposes the set of ProM plugins implemented, and how they inter-
act each other. The available plugins can be split into two groups: plugins for the
simulation of the stream and plugins to mine streaming event data. To simulate a
stream there is the “Log Streamer” plugin. This plugin receives a static log file as
input and streams each event over the network, according to its timestamp (in this
context, timestamps are used only to determine the order of events). It is possible
to define the time between each event, in order to test the miner under different

202 17 Process Mining for Stream Data Sources

Fig. 17.15 Architecture of the plugins implemented in ProM and how they interact with each other.
Each rounded box represents a ProM plugin.

emission rates (i.e. to simulate different traffic conditions). A second plugin, called
“Logs Merger” can be used to concatenate different log files generated by different
process models, just for testing purposes.

Once the stream is active (i.e. events are sent through the network), the clients
can use these data to mine the model. There is a “Stream Tester” plugin, which just
shows the events received. The other plugins support the two basic approaches (Sub-
sect. 17.2.1), and the four stream specific approaches (Subsects. 17.2.2 and 17.2.3).

In a typical testing session of a new stream processmining algorithm, we expect to
have two separate ProM instances active at the same time: the first streaming events
over the network and the second collecting and mining them.

Figure17.16 contains four screenshots of the ProM plugins implemented. The
image on top right, in particular, contains the process streamer: the left bar describes
the stream configuration options (such as the speed or the network port for new
connections), the central part contains a representation of the log as a dotted chart
(the x axis represents the time, and each point with the same timestamp x value
is an event occurred at the same instant). Blue dots are the events that are not yet
sent (future events), green ones are the events already streamed (past events). It is
possible to change the color of the future events so that every event referring to
the same activity or to the same process instance has the same color. The figure at
bottom left contains the Stream Tester: each event of a stream is appended to this
list, which shows the timestamp of the activity, its name and its case id. The left
bar contains some basic statistics (i.e. beginning of the streaming session, number
of events observed and average number of events observed per second). The last
picture, at bottom right, represents the Online HM miner. This view can be divided
into three parts: the central part, where the process representation is shown (in this
case, as a Causal Net); the left bar contains, on top, buttons to start/stop the miner

17.5 Implementation 203

Fig. 17.16 Screenshots of four implemented ProM plugins. The first image (top left) shows the
logs merger (it is possible to define the overlap level of the two logs); the second image (top right)
represents the log streamer, the bottom left image is the stream tester and the image at the bottom
right shows the Online HM.

plus some basic statistics (i.e., beginning of the streaming session, number of events
observed and average number of events observed per second); at the bottom, there
is a graph which shows the evolution of the fitness measure.

Moreover, Command-Line Interface (CLI) versions of the miners are available
too1. In these version, events are read from a static file (one event per line) and the
miners update the model (this implementation realizes an incremental approach of
the algorithm). These implementations can be run in batch and are used for automated
experimentation.

17.6 Summary

In this chapter, we faced the problem of discovering processes for streaming event
data having different characteristics, i.e. stationary streams and streams with drift.

First, we considered basic window-based approaches, where the standard Heuris-
tics Miner algorithm is applied to statics logs obtained by using a moving window on
the stream (we considered two different policies). Then, we introduced a framework
for stream process mining which allows the definition of different approaches, all

1See http://www.processmining.it for more details.

http://www.processmining.it

204 17 Process Mining for Stream Data Sources

based on the dependencies between activities. These can be seen as online versions
of the Heuristics Miner algorithm and differentiate from each other in the way they
assign importance to the observed events. The Online HM, an incremental version of
the HeuristicsMiner, gives the same importance to all the observed events, and thus it
is specifically apt to mine stationary streams. HM with Aging gives less importance
to older events. This is obtained by weighting the statistics of an event by a factor,
the α value, which exponentially decreases with the age of the event. Because of
that, this algorithm is able to cope with streams exhibiting concept drift. However,
the choice of the “right” value for α is difficult, and different values for α could also
be needed at different times. To address this issue, we finally introduced Heuristics
Miner able to automatically adapt the aging factor on the basis of the detection of
concept drift (HM with Self Adapting). Finally, we adapted a standard approach
(Lossy Counting) to our problem.

Experimental results on artificial, synthetic and real data showed the efficacy
of the proposed algorithms with respect to the basic approaches. Specifically, the
Online HM turns out to be quite stable and performs well for streams, especially
when stationary streams are considered; while HM with Self Adapting aging factor
and the Lossy Counting seem to be the right choice in case of concept drift. The
largest log has been used also for measuring performance in terms of time and space
requirements.

This work has also been used as fundamental basis for further online algorithms,
such as those reported in [21, 99], which are able to perform online discovery of
Declare process models from event streams.

With respect to the problems mentioned in Sect. 1.2, this chapter deals with prob-
lem P-05: issues connected to computational power and storage capacity (see also
Sect. 8.5). The results reported in this chapter represent only the first step on this
field, and involve only control-flow discovery. Additional work has to be done in
order to improve the quality of actual mining algorithms, and to allow conformance
analysis and enhancement applicable on event streams.

http://dx.doi.org/10.1007/978-3-319-17482-2_1
http://dx.doi.org/10.1007/978-3-319-17482-2_8

Part V
Conclusions and Future Work

Chapter 18
Conclusions and Future Work

In this book, we identified several key problems that emerge when trying to deploy a
processmining project in an organization. The entirework can be considered as a case
study, in which we had the opportunity to closely work with some local companies.
This situation gave us the opportunity to continuously improve our comprehension
of the actual situation.

18.1 Wrap-Up

We pointed out several problems that might emerge during different stages of a
project. Specifically, before starting the actual process mining phase, all the infor-
mation must be available. Typically this is happening, so it is necessary to construct
such data. Once the log is ready, it is possible to configuremining algorithms parame-
ters. However, our experience with companies demonstrates that this is a challenging
task: users, that are non-expert in process mining, findmany difficulties in driving the
mining through the parameters of the algorithm. Finally, when a model is extracted,
it is necessary to evaluate the result, with respect to the ideal model (e.g., protocols
or guidelines) or with respect to the log used for mining. Moreover, a process model
might be more useful if information on activities originators and business roles is
added too. Apart from all these problems, there is one concerning small and medium
enterprises: these companies might have difficulties in storing all the events gen-
erated by their information systems and the analysis of such data can really deal
with high computational power consumes. These problems were analyzed in detail
in Chaps. 8 and 9.

Figure18.1 shows all contributions (red italic font) described in this book with
their corresponding input and output dependencies (black font). These contributions
are numbered (gray font, in parenthesis) so we can reference them in the following
subsections.

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2_18

207

http://dx.doi.org/10.1007/978-3-319-17482-2_8
http://dx.doi.org/10.1007/978-3-319-17482-2_9

208 18 Conclusions and Future Work

Fig. 18.1 Contributions, written in red italic font, presented in this book. They are numbered in
order to be referenced in the text. Dotted lines indicate that the input/output is not an “object” for
the final user, instead it represents a methodological approach (e.g., a way to configure parameters)
(Color figure online).

Problems with Data Preparation

The first point we addressed with data preparation, is the lack of the case ID field in
the log. In this bookwe presented a solution, formalized using a relational algebra ap-
proach, to extract this information from decorative meta-data fields (Contribution (1)
in Fig.18.1, reported in Chap.10).

Problems at Mining Time

We defined a generalization of one of the most used process mining control-flow
algorithms (namely, Heuristics Miner). In our new version, the algorithm is able to
deal with activities recorded as time intervals, in order to improve the quality of
mined models (Contribution (2) in Fig.18.1, reported in Chap.11). Concerning the
configuration of parameters, we considered the set of parameters of our new min-
ing algorithm (which is the same set of the Heuristics Miner) and we proposed a
procedure for the “conservative discretization” of the possible values of such para-
meters (“conservative” in the sense that surely we do not lose any possible output
model). This discrete set of possible values induces a finite number of mined models.

http://dx.doi.org/10.1007/978-3-319-17482-2_10
http://dx.doi.org/10.1007/978-3-319-17482-2_11

18.1 Wrap-Up 209

In order to select the “best” model, out of this set, we proposed two approaches: one
completely autonomous (Contribution (3) in Fig.18.1, reported in Chap.12) and
another which requires user’s interaction (Contribution (4) in Fig.18.1, reported in
Chap.13). In the latter case, processes are clustered in a hierarchy and the analyst
is required to navigate the hierarchy by iteratively selecting between two branches
until a satisfying result is obtained.

Problems with Results Evaluation

Concerning the mining results evaluation, we proposed two newmetrics: one model-
to-model metric, and another which is model-to-log. In the first case (Contribution
(5) in Fig.18.1, reported in Sect.15.1), we improved an already available model-
to-model metric, in order to make it more suitable for comparing models generated
by process mining algorithms. We applied this new metric to the procedure for the
exploration of process hierarchies. The model-to-log metric (Contribution (6) in
Fig.18.1, reported in Sect.15.2), instead, allows the analyst to compare a Declare
model with respect to a given log. Healthiness measures are also proposed in order
to have numerical values of adherence of the entire model (or of single constraints)
to the available observations (i.e., the log).

Extension of Process Models with Business Roles

In this book we have analyzed an approach for the extension of business process
models with roles (Contribution (7) in Fig.18.1, reported in Chap.14). Specifically,
our approach, given a process model and a log, tries to find handover of roles in
order to partition activities in “swim-lanes”. Handover of roles are discovered using
specific metrics and two thresholds allow the system to be robust against presence
of noise in the log.

Store Capacity and Computational Power Requirements

To address issues related to store capacity and computation power requirements, we
proposed an online solution which allows the incremental mining of event streams
(Contribution (8) in Fig.18.1, reported in Chap.17). In particular, our approach pro-
vides a framework which is able to incrementally mine a stream of events. Different
instances of this framework are proposed and compared too. All these solutions have
been characterized by their ability to deal with concept drifts: some of them perform
better when concept drifts occur, other are only apt to deal with stationary stream.

Lack of Data

In this book we also took into account problems related with the lack of experimental
data. We proposed a system which is able to generate random business processes
(Contribution (9a) in Fig.18.1, reported in Subsect.16.1.1) and can simulate them

http://dx.doi.org/10.1007/978-3-319-17482-2_12
http://dx.doi.org/10.1007/978-3-319-17482-2_13
http://dx.doi.org/10.1007/978-3-319-17482-2_15
http://dx.doi.org/10.1007/978-3-319-17482-2_15
http://dx.doi.org/10.1007/978-3-319-17482-2_14
http://dx.doi.org/10.1007/978-3-319-17482-2_17
http://dx.doi.org/10.1007/978-3-319-17482-2_16

210 18 Conclusions and Future Work

(Contribution (9b) in Fig.18.1, reported in Subsect.16.1.2), producing log files. This
data can be used for evaluation of new process mining algorithms.

18.2 Future Work

It is possible to continue the work reported in this book in several directions. Specif-
ically, we expect that, in real scenarios, several other problems could emerge and
therefore require attention and effort.

Concerning the identification of the case ID, we think it would be interesting
to consider not only the value of the case ID candidates but, to go deeper, their
semantic meaning (if any), which could act as a-priori knowledge. Moreover, a
flexible framework for expressing and feeding the system with a-priori knowledge
is desirable, in order to earn a higher level of generalization. Then, other refinements
are domain-specific: dealing with documents, for instance, we could exploit their
content in order to confirm or reject the findings of our algorithms, when the result
confidence is low.

The automatic extraction of the best model can be improved by increasing the
number of explored hypothesis. In particular, a dynamic generation of the hypothesis
space could help to cope with the corresponding computational burden. Another
improvement that we think could be very useful, is the introduction of machine
learning techniques, to allow the system to “acquire” the preferable process patterns
in the search, and to improve the “goodness measure” by directly encoding this
information.

A lot of work is still required on the stream framework; in particular, we are
willing to conduct a deeper analysis on the influence of the different parameters on
the presented approaches. Moreover, it would be interesting to extend the current
approach to mining the organizational perspective of the process. Finally, from a
process analyst point of view, it may be interesting not only to show the current
updated process model, but also to report the “evolution points” of the process.

Finally, we think that also the process and log generator can be extensively im-
proved: concerning generation of processes, a characterization of the space of the
processes generated by our approach could be useful, so that who is going to use
the system, may exactly know which space of processes it generates. Another open
issue is how much the generated processes can be considered “realistic”: since using
process patterns increases the probability to generate a realistic process, it would be
nice to have control on this factor. An idea, for tackling this problem, could be to
establish the values of some complexity measures for a given dataset of real business
processes and to constrain the generation of random processes to these values for
the given metrics. Concerning the execution of a process, we think that an impor-
tant improvement is the generation of decorative attributes (such as originator or
activities-related data), in order to simulate a more realistic execution.

http://dx.doi.org/10.1007/978-3-319-17482-2_16

References

1. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance checking using cost-
based fitness analysis. In: 2011 IEEE 15th International Enterprise Distributed Object Com-
puting Conference, pp. 55–64. IEEE, August 2011. (Cited on page 192)

2. Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Systems, vol.
31. Springer, Boston (2007). (Cited on pages 54, 178, and 181)

3. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In:
Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp.
469–483. Springer, Heidelberg (1998). (Cited on pages 12, 36, and 38)

4. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: International Con-
ference on Very Large Data (1994). (Cited on page 29)

5. Aiolli, F., Burattin, A., Sperduti, A.: A business process metric based on the alpha algorithm
relations. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPMWorkshops 2011, Part I. LNBIP,
vol. 99, pp. 141–146. Springer, Heidelberg (2012). (Cited on page 139)

6. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–
843 (1983). (Cited on page 90)

7. Bae, J., Liu, L., Caverlee, J., Zhang, L.-J., Bae, H.: Development of distance measures for
process mining, discovery, and integration. Int. J. Web Serv. Res. 4(4), 1–17 (2007). (Cited
on pages 52 and 138)

8. Barricelli, N.A.: Esempi numerici di processi di evoluzione.Methodos 6, 45–68 (1954). (Cited
on page 43)

9. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. 20(4), 1–64 (2011). (Cited on page 147)

10. Beer, I., Ben-david, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in temporal model
checking. Formal Methods Syst. Des. 18(2), 141–163 (2001). (Cited on page 148)

11. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of lan-
guages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
375–383. Springer, Heidelberg (2007). (Cited on page 45)

12. Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark evaluation of incremental pattern
matching in graph transformation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.)
ICGT 2008. LNCS, vol. 5214, pp. 396–410. Springer, Heidelberg (2008). (Cited on page 164)

13. Berry, M.J.A., Linoff, G.S.: Data Mining Techniques, 2nd edn. Wiley Computer Publishing,
New York (2004). (Cited on page 27)

14. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis learning
examples. J. Mach. Learn. Res. 11, 1601–1604 (2010). (Cited on page 178)

© Springer International Publishing Switzerland 2015
A. Burattin: Process Mining Techniques in Business Environments, LNBIP 207,
DOI 10.1007/978-3-319-17482-2

211

212 References

15. Lassen, K.B., van der Aalst, W.M.P.: Complexity metrics for workflow nets. Inf. Softw.
Technol. 51(3), 610–626 (2009). (Cited on page 172)

16. Chandra Bose, R.P.J.: Process Mining in the Large: Preprocessing, Discovery, and Diagnos-
tics. Ph.d. thesis, Technische Universiteit Eindhoven (2012). (Cited on page 192)

17. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift
in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp.
391–405. Springer, Heidelberg (2011). (Cited on pages 55 and 180)

18. Brualdi,R.A.: IntroductoryCombinatorics, 5th edn. PearsonPrenticeHall,OldTappan (2009).
(Cited on pages 122 and 128)

19. Buijs, J.: Flexible Evolutionary Algorithms for Mining Structured Process Models. Ph.d.,
Technische Universiteit Eindhoven (2014). (Cited on page 45)

20. Buijs, J., van Dongen, B., van der Aalst, W.M.P.: A genetic algorithm for discovering process
trees. In: Proceedings of WCCI 2012 IEEE World Congress on Computational Intelligence,
Brisbane, Australia, pp. 925–932 (2012). (Cited on page 45)

21. Burattin, A., Maggi, F.M., Cimitile, M.: Lights, camera, action! business process movies for
online process discovery. In: Proceedings of the 3rd International Workshop on Theory and
Applications of Process Visualization (TAProViz 2014) (2014). (Cited on page 204)

22. Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a posteriori
analysis of declarative processes. In: 2012 IEEE 16th International Enterprise Distributed
Object Computing Conference, pp. 41–50. IEEE, Beijing, September 2012. (Cited on page
147)

23. Burattin, A., Sperduti, A.: Automatic determination of parameters’ values for Heuristics
Miner++. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE, Barcelona, Spain,
July 2010. (Cited on pages 61 and 97)

24. Burattin, A., Sperduti, A.: Heuristics miner for time intervals. In: European Symposium on
Artificial Neural Networks (ESANN), Bruges, Belgium (2010). (Cited on pages 62 and 91)

25. Burattin, A., Sperduti, A.: PLG: a framework for the generation of business process models
and their execution logs. In: Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol.
66, pp. 214–219. Springer, Heidelberg (2011). (Cited on pages 47 and 164)

26. Burattin, A., Sperduti, A.: Process Log Generator: software documentation (2010). (Cited on
page 47)

27. Burattin, A., Sperduti, A., van der Aalst,W.M.P.: HeuristicsMiners for Streaming Event Data.
ArXiv CoRR, December 2012. (Cited on page 178)

28. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from event streams.
In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2420–2427. IEEE, July
2014. (Cited on page 178)

29. Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery of
roles. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE
(2013). (Cited on pages 62 and 120)

30. Burattin, A., Vigo, R.: A framework for semi-automated process instance discovery from
decorative attributes. In: IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), pp. 176–183. IEEE, Paris, April 2011. (Cited on page 72)

31. Calders, T., Günther, C.W., Pechenizkiy, M., Rozinat, A.: Using minimum description length
for process mining. In: Proceedings of the 2009 ACM Symposium on Applied Computing
- SAC 2009, pp. 1451–1455. ACM Press, New York (2009). (Cited on pages 103, 104, and
109)

32. Cardoso, J.: Control-flow complexity measurement of processes and Weyuker’s properties.
Trans. Enformatica Syst. Sci. Eng. 8, 213–218 (2005). (Cited on page 108)

33. Chang, C.-H., Kayed, M., Girgis, M.R., Shaalan, K.: A survey of web information extraction
systems. IEEE Trans. Knowl. Data Eng. 18(10), 1411–1428 (2006). (Cited on page 23)

34. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive
logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst,
W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol.
5460, pp. 278–295. Springer, Heidelberg (2009). (Cited on page 147)

References 213

35. Cook, J.E.: Process discovery and validation through event-data analysis. Ph.d. thesis, Uni-
versity of Colorado (1996). (Cited on page 35)

36. Cook, J.E., Zhidian, D., Liu, C., Wolf, A.L.: Discovering models of behavior for concurrent
workflows. Comput. Ind. 53(3), 297–319 (2004). (Cited on page 35)

37. Cook, J.E., Wolf, A.L.: Automating process discovery through event-data analysis. In: Inter-
national Conference on Software Engineering, pp. 73–82. ACM Press (1995). (Cited on page
35)

38. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data.
Technical report 3, University of Colorado, November 1996. (Cited on page 35)

39. Cook, J.E., Wolf, A.L.: Balboa: a framework for event-based process data analysis. In: Inter-
national Conference on the Software Process (1998). (Cited on page 35)

40. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. ACM SIGSOFT Softw. Eng.
Notes 23(6), 35–45 (1998). (Cited on page 35)

41. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn.
The MIT Press, Cambridge (2001). (Cited on page 127)

42. Cowie, J., Wilks, Y.: Information extraction. Commun. ACM 39(1), 80–91 (1996). (Cited on
page 23)

43. Davenport, T.H.: Process Innovation: ReengineeringWork Through Information Technology.
Harvard Business Press, Cambridge (1992). (Cited on page 11)

44. de Medeiros, A.K.A.: Genetic Process Mining. Ph.d. thesis, Technische Universiteit
Eindhoven (2006). (Cited on pages 43 and 51)

45. de Medeiros, A.K.A., Günther, C.W.: Process mining: using CPN tools to create test logs for
mining algorithms. In: Proceedings of the Sixth Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, pp. 177–190 (2005). (Cited on page 165)

46. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, T.A.J.M.M.: Quantifying process
equivalence based on observed behavior. Data Knowl. Eng. 64(1), 55–74 (2008). (Cited on
page 138)

47. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proceedings of the 12th International Conference on Database Theory - ICDT
2009, pp. 252. ACM Press, New York (2009). (Cited on page 147)

48. Dijkman, R.: Diagnosing differences between business process models. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 261–277. Springer, Hei-
delberg (2008). (Cited on page 139)

49. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business
process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011). (Cited on page 52)

50. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Sys-
tems. Wiley, Hoboken (2005). (Cited on page 42)

51. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business
process models. In: Proceedings of the Fourth Asia-Pacific Conference on Conceptual Mod-
elling, pp. 71–80 (2007). (Cited on page 138)

52. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz and Dynagraph
Static and Dynamic Graph Drawing Tools. Technical report, AT&T Labs - Research, Florham
Park NJ 07932, USA (2004). (Cited on page 172)

53. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 6th edn. Addison-Wesley,
Boston (2010). (Cited on pages 75 and 121)

54. Erl, T.: Service-Oriented Architecture: Concepts, Technology and Design. Prentice Hall, Up-
per Saddle River (2005). (Cited on pages 75 and 121)

55. Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining of SAP
transactions. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops
2007. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008). (Cited on page 82)

56. Ingvaldsen, J.E., Gulla, J.A.: Semantic business process mining of SAP transactions. In: Sun,
Z., Wang, M. (eds.) Handbook of Research on Complex Dynamic Process Management:
Techniques for Adaptability in Turbulent Environments, Chapter 17, 1st edn, pp. 416–429.
Business Science Reference, Hershey (2010). (Cited on page 82)

214 References

57. European Commission. Commission Recommendation of 6 May 2003 concerning the defin-
ition of micro, small and medium-sized enterprises (2003). (Cited on page 65)

58. Eurostat. European Business: Facts and Figures. European Communities, Luxembourg,
Luxembourg (2009). (Cited on page 65)

59. Ferreira,D.R.,Gillblad,D.:Discovering processmodels fromunlabelled event logs. In:Dayal,
U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158.
Springer, Heidelberg (2009). (Cited on page 81)

60. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining with
sequence clustering: experiments and findings. In: Alonso, G., Dadam, P., Rosemann, M.
(eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidelberg (2007). (Cited on
page 82)

61. Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. ACM SIGMODRec. 34(2),
18–26 (2005). (Cited on pages 53 and 54)

62. Ghose, A.K., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J., Lin,
K.-J.,Narasimhan, P. (eds.) ICSOC2007.LNCS, vol. 4749, pp. 169–180. Springer,Heidelberg
(2007). (Cited on page 46)

63. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on
running programs. In: Proceedings 16th Annual International Conference onAutomated Soft-
ware Engineering (ASE 2001), pp. 412–416. IEEE Computer Society (2001). (Cited on page
147)

64. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with arti-
ficial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009). (Cited on page 43)

65. Golab, L., Tamer Özsu, M.: Issues in data stream management. ACM SIGMOD Rec. 32(2),
5–14 (2003). (Cited on page 53)

66. Golani, M., Pinter, S.S.: Generating a process model from a process audit log. In: van der
Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp.
136–151. Springer, Heidelberg (2003). (Cited on page 41)

67. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-
theoretic approach. J. ACM 40(5), 1108–1133 (1993). (Cited on page 90)

68. Greco, G., Guzzo, A., Pontieri, L.: Mining hierarchies of models: from abstract views to
concrete specifications. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F.
(eds.) BPM 2005. LNCS, vol. 3649, pp. 32–47. Springer, Heidelberg (2005). (Cited on page
42)

69. Greco, G., Guzzo, A., Pontieri, L., Saccá, D.: Mining expressive process models by clustering
workflow traces. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol.
3056, pp. 52–62. Springer, Heidelberg (2004). (Cited on page 42)

70. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by
clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006). (Cited on
page 51)

71. Grünwald, P.: A Tutorial Introduction to the Minimum Description Length Principle. MIT
Press, Cambridge (2005). (Cited on pages 102 and 103)

72. Günther, C.W.: Processmining in Flexible Environments. Ph.d. thesis, TechnischeUniversiteit
Eindhoven, Eindhoven (2009). (Cited on pages 34, 43, and 61)

73. Günther, C.W., van der Aalst, W.M.P.: A generic import framework for process event logs.
In: Eder, J., Dustdar, S. (eds.) BPMWorkshops 2006. LNCS, vol. 4103, pp. 81–92. Springer,
Heidelberg (2006). (Cited on pages 60 and 116)

74. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based
on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). (Cited on pages 43 and 44)

75. Günther, C.W., Verbeek, E.H.M.W.: XES Standard Definition (2009). www.xes-standard.org
(Cited on pages 60 and 116)

76. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Business Revo-
lution. Harper Business, New York (1993). (Cited on page 11)

References 215

77. Herbst, J.: A machine learning approach to workflow management. In: Lopez de Mantaras,
R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg
(2000). (Cited on page 37)

78. Herbst, J.: Workflow mining with InWoLvE. Comput. Ind. 53(3), 245–264 (2004). (Cited on
page 37)

79. Herbst, J., Karagiannis, D.: Integrating machine learning and workflow management to sup-
port acquisition and adaptation of workflow models. In: International Workshop on Database
and Expert SystemsApplications, vol. 9, pp. 745–752. IEEEComputer Society, LosAlamitos,
June 1998. (Cited on page 37)

80. Hill, J.B., Sinur, J., Flint, D., Melenovsky, M.J.: Gartner’s Position on Business Process
Management. Technical report February, Gartner Inc (2006). (Cited on page 19)

81. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat.
Assoc. 58(301), 13–30 (1963). (Cited on page 190)

82. Hwang, S.-Y., Yang, W.-S.: On the discovery of process models from their instances. Decis.
Support Syst. 34(1), 41–57 (2002). (Cited on page 38)

83. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar,
S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). (Cited on pages 45 and 63)

84. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for modelling
and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf. 9(3–4), 213–254
(2007). (Cited on page 165)

85. Kaiser, K., Miksch, S.: Information Extraction. Technical report May, Vienna University of
Technology, Institute of Software Technology and Interactive Systems, Vienna (2005). (Cited
on pages 23, and 24)

86. Kalsing, A.C., do Nascimento, G.S., Iochpe, C.,Thom, L.H.: An incremental process mining
approach to extract knowledge from legacy systems. In: 2010 14th IEEE International Enter-
prise Distributed Object Computing Conference, pp. 79–88. IEEE, October 2010. (Cited on
page 55)

87. Caskurlu, B.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). (Cited on page 63)

88. Kindler, E., Rubin, V., Schäfer, W.: Incremental workflow mining based on document ver-
sioning information. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol.
3840, pp. 287–301. Springer, Heidelberg (2006). (Cited on page 55)

89. Kindler, E., Rubin, V., Schäfer, W.: Incremental workflow mining for process flexibility. In:
Proceedings of BPMDS2006, pp. 178–187 (2006). (Cited on page 55)

90. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-aware
compliance checking of business process models. In: Parsons, J., Saeki, M., Shoval, P., Woo,
C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 332–346. Springer, Heidelberg (2010).
(Cited on page 147)

91. Ko, R.K.L.: A computer scientist’s introductory guide to business process management
(BPM). Crossroads 15(4), 11–18 (2009). (Cited on pages 11, 12, and 20)

92. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The difference between graph-based and
block-structured business process modelling languages. Enterp. Model. Inf. Syst. 4(1), 3–13
(2009). (Cited on page 39)

93. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181.
Springer, Heidelberg (2011). (Cited on pages 52 and 139)

94. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int. J. Softw.
Tools Technol. Transf. (STTT) 4(2), 224–233 (2003). (Cited on page 149)

95. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI
NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). (Cited on page 45)

96. de Leoni,M.,Maggi, F.M., van der Aalst,W.M.P.: Aligning event logs and declarative process
models for conformance checking. In:Barros,A.,Gal,A.,Kindler, E. (eds.)BPM2012.LNCS,
vol. 7481, pp. 82–97. Springer, Heidelberg (2012). (Cited on page 46)

216 References

97. Li, C., Reichert, M.,Wombacher, A.: OnMeasuring ProcessModel Similarity based on High-
levelChangeOperations. Technical report, Centre forTelematics and InformationTechnology,
University of Twente (2007). (Cited on page 52)

98. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012).
(Cited on page 147)

99. Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A.: Online process discovery to detect
concept drifts in LTL-based declarative processmodels. In:Meersman, R., Panetto, H., Dillon,
T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.) ODBASE 2013. LNCS,
vol. 8185, pp. 94–111. Springer, Heidelberg (2013). (Cited on page 204)

100. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring busi-
ness constraints with linear temporal logic: an approach based on colored automata. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 132–147.
Springer, Heidelberg (2011). (Cited on page 147)

101. Maggi, F.M.,Mooij, A.J., van der Aalst,W.M.P.: User-guided discovery of declarative process
models. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp.
192–199. IEEE, April 2011. (Cited on pages 45, 147, and 149)

102. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: Proceedings
of InternationalConference onVeryLargeDataBases, pp. 346–357.MorganKaufmann,Hong
Kong, China (2002). (Cited on page 187)

103. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, vol. 35, 1st
edn. Cambridge University Press, Cambridge (2008). (Cited on pages 23, 25, 114 and 130)

104. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big
Data: The Next Frontier for Innovation, Competition, and Productivity. Technical report June,
McKinsey Global Institute (2011). (Cited on page 63)

105. Măruşter, L.,Weijters, A.J.M.M.T., van derAalst,W.M.P., van denBosch, A.: Processmining:
discovering direct successors in process logs. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS
2002. LNCS, vol. 2534, pp. 364–373. Springer, Heidelberg (2002). (Cited on page 141)

106. Mendling, J., van Dongen, B., van der Aalst, W.M.P.: On the degree of behavioral similarity
between business process models. In: Workshop on Event-Driven Process Chains, pp. 39–58
(2007). (Cited on page 52)

107. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychol. Rev. 101(2), 343–352 (1956). (Cited on page 63)

108. Minor, M., Tartakovski, A., Bergmann, R.: Representation and structure-based similarity
assessment for agile workflows. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS
(LNAI), vol. 4626, pp. 224–238. Springer, Heidelberg (2007). (Cited on page 52)

109. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997). (Cited on pages 36, 37,
and 43)

110. Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Hull, R.,
Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg
(2010). (Cited on pages 51, 192, and 199)

111. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989).
(Cited on page 13)

112. OMG. Business Process Model and Notation (BPMN) - Version 2.0, Beta 1 (2009). (Cited
on pages 12, 13 and 15)

113. Ould, M.A.: Business Processes: Modelling and Analysis for Re-engineering and Improve-
ment. Wiley, New York (1995). (Cited on page 12)

114. Papazoglou, M.P., Heuvel, W.-J.: Service oriented architectures: approaches, technologies
and research issues. VLDB J. 16(3), 389–415 (2007). (Cited on page 20)

115. Parrow, J.: Handbook of Process Algebra. Elsevier, Amsterdam (2001). (Cited on page 13)
116. Pérez-castillo, R., Weber, B., Guzmán, I.G.-R., Piattini, M., Pinggera, J. Assessing event

correlation in non-process-aware information systems. Softw. Syst. Model., 1–23 (2012).
(Cited on page 82)

References 217

117. Perrey, R., Lycett, M.: Service-oriented architecture. In: Symposium on Applications and the
Internet Workshops, pp. 116–119. IEEE Computer Society (2003). (Cited on page 20)

118. Peterson, J.L.: Petri nets. ACM Comput. Surv. (CSUR) 9(3), 223–252 (1977). (Cited on page
20)

119. Petri, C.A.: Kommumkation mit Automaten. Ph.D. thesis, Institut für Instrumentelle Mathe-
matik, Universität Bonn (1962). (Cited on page 14)

120. Pešić,M.: Constraint-BasedWorkflowManagement Systems: Shifting Control toUsers. Ph.d.
thesis, Technische Universiteit Eindhoven (2008). (Cited on page 19)

121. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
169–180. Springer, Heidelberg (2006). (Cited on page 19)

122. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus
declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui,
K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer,
Heidelberg (2012). (Cited on page 18)

123. Pinter, S.S., Golani, M.: Discovering workflow models from activities’ lifespans. Comput.
Ind. 53(3), 283–296 (2004). (Cited on page 41)

124. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science (SFCS 1977), pp. 46–57. IEEE, September 1977. (Cited on page 147)

125. Praxiom Research Group Limited. ISO 9000 2005 Plain English Definitions (2009). (Cited
on page 12)

126. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press,
Cambridge (2010). (Cited on pages 27 and 144)

127. Vinter Ratzer, A., et al.: CPN tools for editing, simulating, and analysing coloured Petri nets.
In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462.
Springer, Heidelberg (2003). (Cited on page 165)

128. Rozinat, A.: Process Mining: Conformance and Extension. Ph.d., Technische Universiteit
Eindhoven (2010). (Cited on page 46)

129. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, T.A.J.M.M., van der Aalst,
W.M.P.: Towards an evaluation framework for process mining algorithms. BPMCenter report
BPM-07-06, BPMcenter.org (2007). (Cited on pages 49, and 50)

130. Rozinat, A., van der Aalst, W.M.P.: Decision Mining in Business Processes. Technical report,
Business Process Management (BPM) Center (2006). (Cited on page 46)

131. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006).
(Cited on pages 34 and 46)

132. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1), 64–95 (2008). (Cited on pages 34, 51, and 52)

133. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow Control-flow
Patterns: A Revised View. BPM Center report BPM-06-22, BPMcenter.org (2006). (Cited on
pages 143, 144, and 166)

134. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
Englewood Cliffs (2002). (Cited on page 107)

135. Schimm, G.: Process miner - a tool for mining process schemes from event-based data. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
525–528. Springer, Heidelberg (2002). (Cited on page 39)

136. Schimm, G.: Mining most specific workflowmodels from event-based data. In: van der Aalst,
W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 25–40.
Springer, Heidelberg (2003). (Cited on page 39)

137. Schröder, B.: Ordered Sets: An Introduction. Birkhäuser Boston, Boston (2002). (Cited on
page 79)

138. Schweikardt, N.: Short-entry on one-pass algorithms. In: Liu, L., Öszu, M.T. (eds.) Ency-
clopedia of Database Systems, pp. 1948–1949. Springer, Heidelberg (2009). (Cited on page
183)

218 References

139. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech, J. 27, 379–423,
623–656 (1948). (Cited on page 130)

140. Sharp, A., McDermott, P.: Workflow Modeling: Tools for Process Improvement and Appli-
cation Development, 2nd edn. Artech House Publishers, Boston (2008). (Cited on page 21)

141. Solé, M., Carmona, J.; Incremental process mining. In: Proceedings of ACSD/Petri Nets
Workshops, pp. 175–190 (2010). (Cited on page 55)

142. Song, M., van der Aalst, W.M.P.: Supporting process mining by showing events at a glance.
In: Workshop on Information Technologies and Systems (WITS), pp. 139–145 (2007). (Cited
on page 116)

143. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organizational mining.
Decis. Support Syst. 46(1), 300–317 (2008). (Cited on page 134)

144. Syropoulos, A.: Mathematics of multisets. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa,
A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 347–358. Springer, Heidelberg (2001).
(Cited on page 122)

145. van der Aalst, W.M.P.: Verification of workflow nets. Appl. Theory Petri Nets 1248, 407–426
(1997). (Cited on pages 14 and 146)

146. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J. Circuits
Syst. Comput. 8, 21–66 (1998). (Cited on page 13)

147. van der Aalst, W.M.P.: Business alignment: using process mining as a tool for delta analysis
and conformance testing. Requirements Eng. 10(3), 198–211 (2005). (Cited on page 46)

148. van der Aalst, W.M.P.: Process discovery: capturing the invisible. IEEE Comput. Intell. Mag.
5(1), 28–41 (2010). (Cited on page 33)

149. van der Aalst, W., Adriansyah, A., van Dongen, B.: Causal nets: a modeling language tailored
towards process discovery. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol.
6901, pp. 28–42. Springer, Heidelberg (2011). (Cited on page 183)

150. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models
for conformance checking and performance analysis. Wiley Interdisc. Rev. Data Min. Knowl.
Disc. 2(2), 182–192 (2012). (Cited on pages 121 and 192)

151. van der Aalst, W.M.P., de Medeiros, A.K.A., van Dongen, B., Weijters, T.A.J.M.M.: Process
Mining: Extending the α-Algorithm to Mine Short Loops. Eindhoven University of Technol-
ogy, Eindhoven (2004). (Cited on page 40)

152. van der Aalst,W.M.P., deMedeiros, A.K.A.,Weijters, T.A.J.M.M.: UsingGenetic Algorithms
toMine ProcessModels: Representation, Operators and Results. BETAWorking Paper Series
(2004). (Cited on page 107)

153. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, T.A.J.M.M.: Genetic process mining.
Appl. Theory Petri Nets 3536, 48–69 (2005). (Cited on page 43)

154. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process equivalence:
comparing two process models based on observed behavior. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006).
(Cited on page 138)

155. van derAalst,W.M.P.,Günther, C.W.,Rubin,V.,Verbeek, E.H.M.W.,Kindler, E., vanDongen,
B.: Processmining: a two-step approach tobalancebetweenunderfitting andoverfitting. Softw.
Syst. Model. 9(1), 87–111 (2008). (Cited on page 101)

156. van der Aalst,W.M.P., Pešić,M., Schonenberg, H.: Declarativeworkflows: balancing between
flexibility and support. Comput. Sci. Res. Dev. 23, 99–113 (2009). (Cited on pages 18 and
147)

157. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs.
Comput. Support. Coop. Work (CSCW) 14(6), 549–593 (2005). (Cited on pages 45 and 135)

158. van der Aalst, W.M.P., Song, M.S.: Mining social networks: uncovering interaction patterns
in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol.
3080, pp. 244–260. Springer, Heidelberg (2004). (Cited on page 45)

159. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. inf.
syst. 30(4), 245–275 (2005). (Cited on pages 17 and 192)

References 219

160. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distrib. Parallel Databases 14(1), 5–51 (2003). (Cited on page 17)

161. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process management: a
survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1–12. Springer, Heidelberg (2003). (Cited on page 13)

162. van der Aalst, W.M.P., van Dongen, B.F.: Discovering workflow performance models from
timed logs. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 45–63.
Springer, Heidelberg (2002). (Cited on pages 3, 40, and 41)

163. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros, A.K.A.,
Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W.E., Weijters, A.J.M.M.T.: ProM 4.0: com-
prehensive support for real process analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007). (Cited on page 60)

164. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and Sys-
tems. The MIT Press, Cambridge (2004). (Cited on page 164)

165. van der Aalst, W.M.P., Weijters, T.A.J.M.M.: Rediscovering workflow models from event-
based data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162 (2003). (Cited on
pages 41 and 54)

166. van der Aalst, W.M.P., Weijters, T.A.J.M.M.: Process mining: a research agenda. Comput.
Ind. 53(3), 231–244 (2004). (Cited on page 3)

167. van der Aalst, W.M.P., Weijters, T.A.J.M.M., de Medeiros, A.K.A.: Process Mining with the
Heuristics Miner-algorithm. BETAWorking Paper Series, WP 166. Eindhoven University of
Technology, Eindhoven (2006). (Cited on pages 12, 41, 51, and 62)

168. van der Aalst, W.M.P., Weijters, T.A.J.M.M., Herbst, J., van Dongen, B., Maruster, L.,
Schimm, G.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47(2),
237–267 (2003). (Cited on pages 34 and 39)

169. van der Aalst, W.M.P., Weijters, T.A.J.M.M., Maruster, L.: Workflow Mining: Which
processes can be rediscovered? Technical report, Eindhoven University of Technology,
Eindhoven (2002). (Cited on page 40)

170. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer, Heidelberg (2011). (Cited on pages 141 and 178)

171. van der Werf, J.M.E.M., van Dongen, B., van Hee, K.M., Hurkens, C.A.J., Serebrenik,
A.: Process discovery using integer linear programming. Computer Science report (08–04),
Eindhoven University of Technology, Eindhoven, The Netherlands (2008). (Cited on page
45)

172. van Dongen, B., Busi, N., Pinna, G.M., van der Aalst W.M.P.: An iterative algorithm for
applying the theory of regions in processmining. In:Workshop on FormalAspects of Business
Processes and Web Services (2007). (Cited on page 45)

173. van Dongen, B., de Medeiros, A.K.A., Verbeek, E.H.M.W., Weijters, T.A.J.M.M., van der
Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. Appl. Theory
of Petri Nets 3536, 444–454 (2005). (Cited on pages 60 and 115)

174. van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring similarity between business process
models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464.
Springer, Heidelberg (2008). (Cited on page 139)

175. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase process mining: building instance
graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol.
3288, pp. 362–376. Springer, Heidelberg (2004). (Cited on page 42)

176. van Dongen, B., van der Aalst, W.M.P.: Multi-phase process mining: aggregating instance
graphs into EPCs and Petri nets. In: PNCWB 2005 Workshop, pp. 35–58 (2005). (Cited on
page 42)

177. van Hee, K.M., Liu, Z.: Generating benchmarks by random stepwise refinement of Petri nets.
In: Proceedings of Workshop APNOC/SUMo (2010). (Cited on page 164)

178. van Leeuwen, M., Siebes, A.: StreamKrimp: detecting change in data streams. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI),
vol. 5211, pp. 672–687. Springer, Heidelberg (2008). (Cited on page 178)

220 References

179. Verbeek, E.H.M.W., Buijs, J., van Dongen, B., van der Aalst, W.M.P.: ProM 6: the process
mining toolkit. In: BPM 2010 Demo, pp. 34–39 (2010). (Cited on pages 60 and 115)

180. Walicki, M., Ferreira, D.R.: Mining sequences for patterns with non-repeating symbols. In:
IEEECongress on Evolutionary Computation 2010, Barcelona, Spain, pp. 3269–3276 (2010).
(Cited on page 82)

181. Wang, J., He, T., Wen, L., Wu, N., ter Hofstede, A.H.M., Su, J.: A behavioral similarity
measure between labeled petri nets based on principal transition sequences. In: Meersman,
R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 394–401. Springer,
Heidelberg (2010). (Cited on page 139)

182. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behav-
ioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429 (2011). (Cited on
pages 139 and 142)

183. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.-G.: A novel approach for process
mining based on event types. J. Intel. Inf. Syst. 32(2), 163–190 (2008). (Cited on page 40)

184. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach.
Learn. 23(1), 69–101 (1996). (Cited on pages 54 and 178)

185. Wing, J.M.: FAQ on Pi-Calculus, December 2002. (Cited on page 13)
186. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.-G.: A workflow net similarity measure based

on transition adjacency relations. Comput. Ind. 61(5), 463–471 (2010). (Cited on pages 139,
140, 141, 142, 146)

187. Zugal, S., Pinggera, J.,Weber, B.: The impact of testcases on themaintainability of declarative
process models. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R.,
Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 163–177. Springer,
Heidelberg (2011). (Cited on page 18)

188. Zurawski, R.: Petri nets and industrial applications: a tutorial. IEEE Trans. Industr. Electron.
41(6), 567–583 (1994). (Cited on page 13)

	Preface
	Acknowledgments
	Contents
	1 Introduction
	1.1 Business Process Modeling
	1.2 Process Mining
	1.3 Book Outline
	1.4 Website

	Part I State of the Art: BPM, Data Miningand Process Mining
	2 Introduction to Business Processes, BPM, and BPM Systems
	2.1 Introduction to Business Processes
	2.1.1 Petri Nets
	2.1.2 BPMN
	2.1.3 YAWL
	2.1.4 Declare
	2.1.5 Other Formalisms

	2.2 Business Process Management Systems

	3 Data Generated by Information Systems (and How to Get It)
	3.1 Information Extraction from Unstructured Sources
	3.2 Evaluation with the F1 Measure

	4 Data Mining for Information System Data
	4.1 Classification with Nearest Neighbor
	4.2 Neural Networks Applied to Estimation
	4.3 Association Rules Extraction
	4.4 Clustering
	4.4.1 Clustering with Self-organizing Maps
	4.4.2 Clustering with Hierarchical Clustering

	4.5 Profiling Using Decision Trees

	5 Process Mining
	5.1 Process Mining as Control-Flow Discovery
	5.2 Other Perspectives of Process Mining
	5.2.1 Organizational Perspective
	5.2.2 Conformance Checking
	5.2.3 Data Perspective

	5.3 Performance Evaluation of Process Mining Algorithm

	6 Quality Criteria in Process Mining
	6.1 Model-to-Log Metrics
	6.2 Model-to-Model Metrics

	7 Event Streams
	7.1 Data Streams
	7.1.1 Data-Based Mining
	7.1.2 Task-Based Mining

	7.2 Common Stream Mining Approaches
	7.3 Stream Mining and Process Mining

	Part II Obstacles to Process Mining in Practice
	8 Obstacles to Applying Process Mining in Practice
	8.1 Typical Deploy Scenarios
	8.2 Problems with Data Preparation
	8.3 Problems During the Mining Phase
	8.4 Problems with the Interpretation of the Mining Results and Extension of Processes
	8.5 Incremental and Online Process Mining

	9 Long-Term View Scenario
	9.1 A Target Scenario
	9.2 Discussion

	Part III Process Mining as an EmergingTechnology
	10 Data Preparation
	10.1 Process Mining in New Scenarios
	10.2 Working Framework for Event Logs
	10.3 Identification of Process Instances
	10.3.1 Exploiting A-priori Knowledge
	10.3.2 Selection of the Identifier
	10.3.3 Results Organization and Filtering
	10.3.4 Deriving a Log to Mine

	10.4 Experimental Results
	10.5 Similar Problems and Solutions
	10.6 Summary

	11 Heuristics Miner for Time Interval
	11.1 Heuristics Miner
	11.2 Activities as Time Interval
	11.3 Experimental Results
	11.4 Summary

	12 Automatic Configuration of Mining Algorithm
	12.1 The Problem of Selecting the Right Parameters
	12.2 Parameters of the Heuristics Miner++ Algorithm
	12.3 Facing the Parameters Setting Problem
	12.4 Discretization of the Parameters Values
	12.5 Exploration of the Hypothesis Space
	12.6 Improved Exploration of the Hypothesis Space
	12.6.1 Factorization of the Search Space
	12.6.2 Searching for the Best Hypothesis

	12.7 Experimental Results
	12.7.1 Experimental Setup
	12.7.2 Results

	12.8 Summary

	13 User-Guided Discovery of Process Models
	13.1 Clustering for Process Mining
	13.2 Results on Clustering for Process Mining
	13.3 Implementation
	13.4 Summary

	14 Extensions of Business Processes with Organizational Roles
	14.1 Working Framework
	14.2 Rules for Handover of Roles
	14.2.1 Rule for Strong No Handover
	14.2.2 Rule for No Handover
	14.2.3 Degree of No Handover of Roles
	14.2.4 Merging Roles

	14.3 Algorithm Description
	14.3.1 Step 1: Handover of Roles Identification
	14.3.2 Step 2: Roles Aggregation
	14.3.3 Generation of Candidate Solutions
	14.3.4 Partition Evaluation

	14.4 Experiments
	14.5 Other Approaches Dealing with Organizational Perspective
	14.6 Summary

	15 Results Interpretation and Evaluation
	15.1 Comparing Processes
	15.1.1 Problem Statement and the General Approach
	15.1.2 Process Representation
	15.1.3 A Metric for Processes Comparison

	15.2 A-Posteriori Analysis of Declarative Processes
	15.2.1 Declare
	15.2.2 An Approach for A-Posteriori Analysis
	15.2.3 An Algorithm to Discriminate Fulfillments from Violations
	15.2.4 Healthiness Measures
	15.2.5 Experiments

	15.3 Implementations
	15.4 Summary

	16 Hands-On: Obtaining Test Data
	16.1 A Process and Logs Generator
	16.1.1 The Processes Generation Phase
	16.1.2 Execution of a Process Model

	16.2 Implementation
	16.3 Summary

	Part IV A New Challenge in Process Mining
	17 Process Mining for Stream Data Sources
	17.1 Basic Concepts
	17.2 Heuristics Miners for Streams
	17.2.1 Baseline Algorithm for Stream Mining
	17.2.2 Stream-Specific Approaches
	17.2.3 Stream Process Mining with Lossy Counting (Evolving Stream)

	17.3 Error Bounds on Online Heuristics Miner
	17.4 Results
	17.4.1 Models Description
	17.4.2 Algorithms Evaluation

	17.5 Implementation
	17.6 Summary

	Part V Conclusions and Future Work
	18 Conclusions and Future Work
	18.1 Wrap-Up
	18.2 Future Work

	References

